<p>This thesis describes results from fundamental studies of liposomes intended for drug delivery and pH or temperature triggered release. In addition, the effect of lipid composition on bilayer disc formation and a potential application of the bilayer discs were investigated.</p><p>The lower pH encountered by endocytosed liposomes can be utilized to trigger drug release. The mechanisms behind cytosolic drug delivery were investigated using two different kinds of pH-sensitive liposomes. The results indicate that incorporation of non-lamellar forming lipids into the endosome membrane may allow for drug escape into the cytosol.</p><p>Temperature-sensitive liposomes containing lysolipid (LTSL) release their content almost instantly when heated to temperatures close to the gel to liquid crystalline phase transition temperature (T<i>C</i>). Morphological changes of the liposomes in response to temperature cycling were studied. Temperature cycling induced liposome openings and disintegration of the liposomes into bilayer discs. Incubation of LTSL in the presence of multilamellar liposomes (MLVs) resulted in relocalisation of lysolipid into the MLVs, which affected the rapid release from LTSL. We propose that the presence of micelle-forming components, such as lysolipids and PEG-lipids, facilitates the formation of defects and membrane openings during the initial phase of membrane melting, resulting in the observed rapid release. Similar to added lysolipids, also hydrolysis generated lysolipids induce disc-formation upon heating through T<i>C</i> of the lipid mixture.</p><p>Two fundamentally different micelles may form in PEG-lipid/lipid mixtures. We found that discoidal structures are preferred over cylindrical micelles when the mixture contains components that reduce the spontaneous curvature, increase the monolayer bending modulus, or reduce PEG-lipid/lipid miscibility. The large discoidal micelles found at low PEG-lipid content are better described as bilayer discs. We evaluated such discs as model membranes in drug partitioning studies, and suggest that they, in some cases, produce more accurate data than liposomes.</p>
Identifer | oai:union.ndltd.org:UPSALLA/oai:DiVA.org:uu-7606 |
Date | January 2007 |
Creators | Sandström, Maria |
Publisher | Uppsala University, Department of Physical Chemistry, Uppsala : Acta Universitatis Upsaliensis |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, comprehensive summary, text |
Relation | Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, 1651-6214 ; 276 |
Page generated in 0.0024 seconds