Correlative and regression analyses of daily ERA-Interim reanalysis data for three separate solarmaximum periods confirm the existence of a temperature response to short-term (mainly ∼27 day) solarultraviolet variations at tropical latitudes in both the lower stratosphere and troposphere. The response,which occurs at a phase lag of 6–10 days after the solar forcing peak, consists of a warming in the lowerstratosphere, consistent with relative downwelling and a slowing of the mean meridional (Brewer-Dobson)circulation, and a cooling in the troposphere. The midtropospheric cooling response is most significant inthe tropical Pacific, especially under positive El Niño–Southern Oscillation conditions and may be relatedto a reduction in the number of Madden-Julian oscillation events that propagate eastward into the centralPacific following peaks in short-term solar forcing.
Identifer | oai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/623304 |
Date | 28 April 2016 |
Creators | Hood, L. L. |
Contributors | Univ Arizona, Lunar & Planetary Lab, Lunar and Planetary Laboratory; University of Arizona; Tucson Arizona USA |
Publisher | AMER GEOPHYSICAL UNION |
Source Sets | University of Arizona |
Language | English |
Detected Language | English |
Type | Article |
Rights | ©2016. American Geophysical Union. All Rights Reserved. |
Relation | http://doi.wiley.com/10.1002/2016GL068855 |
Page generated in 0.0016 seconds