Master of Science / Department of Civil Engineering / Sunanda Dissanayake / In order to improve safety of the overall surface transportation system, each of the critical areas needs to be addressed separately with more focused attention. Statistics clearly show that large-truck crashes contribute significantly to an increased percentage of high-severity crashes. It is therefore important for the highway safety community to identify characteristics and contributory causes related to large-truck crashes. During the first phase of this study, fatal crash data from the Fatality Analysis Reporting System (FARS) database were studied to achieve that objective. In this second phase, truck-crashes of all severity levels were analyzed with the intention of understanding characteristics and contributory causes, and identifying factors contributing to increased severity of truck-crashes, which could not be achieved by analyzing fatal crashes alone. Various statistical methodologies such as cross-classification analysis and severity models were developed using Kansas crash data. Various driver-, road-, environment- and vehicle- related characteristics were identified and contributory causes were analyzed.
From the cross-classification analysis, severity of truck-crashes was found to be related with variables such as road surface (type, character and condition), accident class, collision type, driver- and environment-related contributory causes, traffic-control type, truck-maneuver, crash location, speed limit, light and weather conditions, time of day, functional class, lane class, and Average Annual Daily Traffic (AADT). Other variables such as age of truck driver, day of the week, gender of truck-driver, pedestrian- and truck-related contributory causes were found to have no relationship with crash severity of large trucks. Furthermore, driver-related contributory causes were found to be more common than any other type of contributory cause for the occurrence of truck-crashes. Failing to give time and attention, being too fast for existing conditions, and failing to yield right of way were the most dominant truck-driver-related contributory causes, among many others.
Through the severity modeling, factors such as truck-driver-related contributory cause, accident class, manner of collision, truck-driver under the influence of alcohol, truck maneuver, traffic control device, surface condition, truck-driver being too fast for existing conditions, truck-driver being trapped, damage to the truck, light conditions, etc. were found to be significantly related with increased severity of truck-crashes. Truck-driver being trapped had the highest odds of contributing to a more severe crash with a value of 82.81 followed by the collision resulting in damage to the truck, which had 3.05 times higher odds of increasing the severity of truck-crashes. Truck-driver under the influence of alcohol had 2.66 times higher odds of contributing to a more severe crash.
Besides traditional practices like providing adequate traffic signs, ensuring proper lane markings, provision of rumble strips and elevated medians, use of technology to develop and implement intelligent countermeasures were recommended. These include Automated Truck Rollover Warning System to mitigate truck-crashes involving rollovers, Lane Drift Warning Systems (LDWS) to prevent run-off-road collisions, Speed Limiters (SLs) to control the speed of the truck, connecting vehicle technologies like Vehicle-to-Vehicle (V2V) integration system to prevent head-on collisions etc., among many others. Proper development and implementation of these countermeasures in a cost effective manner will help mitigate the number and severity of truck-crashes, thereby improving the overall safety of the transportation system.
Identifer | oai:union.ndltd.org:KSU/oai:krex.k-state.edu:2097/14027 |
Date | January 1900 |
Creators | Kotikalapudi, Siddhartha |
Publisher | Kansas State University |
Source Sets | K-State Research Exchange |
Language | en_US |
Detected Language | English |
Type | Thesis |
Page generated in 0.0011 seconds