Return to search

Computational study on the catalytic mechanism of mtKasA / Theoretische Untersuchungen des katalytischen Mechanismus von mtKasA

Das Enzym KasA spielt eine entscheidende Rolle in der Biosynthese von Mykolsäuren, den Bausteinen der Zellwände von Mycobacteriumtuberculosis. Dessen essentielle Notwendigkeit zeigt sich bei Abwesenheit von KasA in einer Zelllyse (Auflösung von Zellen) bei Mycobacteriumtuberculosis. Durch seine Bedeutung für Mycobacteriumtuberculosis, dem Erreger von Tuberkulose und damit der zweithäufigsten Todesursache durch Infektionskrankheiten, stellt KasA ein vielversprechendes Ziel für die Entwicklung neuer Medikamente gegen Tuberkulose dar. Durch das Auftreten von extensiv resistenten Stämmen welche die meisten bekannten Antibiotika zur Bekämpfung von Tuberkulose inaktivieren wird es dringend notwendig neue Medikamente gegen Tuberkulose zu entwickeln. In Kapitel 3.1 wird der Protonierungszustand der katalytischen Reste im Ruhezustand untersucht. Für diese Untersuchungen wurden Free Energy Perturbation (FEP) Rechnungen und MD Simulationen verwendet. Die Ergebnisse zeigten, dass der zwitterionische Zustand am wahrscheinlichsten ist. Um diese Aussage mit weiteren handfesten Daten zu untermauern wurden Potential(hyper)flächen (PES) für den Protonentransfer zwischen neutralen und zwitterionischen Zustand mit Hilfe von QM/MM Methoden berechnet. Durch die starke Abhängigkeit der QM/MM Optimierung von der Ausgangsstruktur war es nicht möglich konsistente Ergebnisse für diese Berechnungen zu bekommen. Um dieses Problem zu umgehen wurde ein auf QM/MM basierendes Umbrella Sampling mit Semiempirischen Methoden (RM1) durchgeführt. Die sich daraus ergebende PMF Fläche zeigt das der zwitterionische Zustand stabiler ist als der neutrale Zustand. In Kapitel 3.2 wurde der Protonierungszustand der entsprechenden Reste im Acyl-Enzym Zustand untersucht. Im Unterschied zu anderen katalytischen Resten ist der Protonierungszustand von His311 ist nicht eindeutig im Acyl-Enzym Zustand und es ergeben sich aus den verschiedenen Protonierungszuständen verschiedene Decarboxylierungsmechanismen. Um den wahrscheinlichsten Protonierungszustand bezüglich der freien Energie zu bestimmen wurden FEP Rechnungen durchgeführt. Die Ergebnisse zeigen, dass der pKa Wert an Nδ beträchtlich durch die Enzymumgebung verringert wird, während dies für Nε nicht der Fall ist. Zusätzlich dazu wurden die PMF Profile für den Protonentransfer zwischen Lys340 und Glu354 mit der QM/MM basierten Umbrella Sampling Methode berechnet. Die Ergebnisse zeigen, dass das Lys340/Glu354 Paar eher neutral als ionisch ist, wenn His311 an Nε protoniert ist. Ein relativ hoher ionischer Charakter des Lys340/Glu354 Paares, wenn His311 doppelt protoniert ist, gibt einen wertvollen Einblick in die Rolle welche das Lys340/Glu354 Paar beim verschieben des Protonierungszustandes von Nδ zu Nε im His311 nach dem Acyltransferschritt spielt. Die Ergebnisse zeigen, dass His311 neutral und an Nε protoniert ist. Ebenso ist das Lys340/Glu354 Paar neutral im Acyl-Enzym Zustand. Diese berechneten Ergebnisse führen zu dem Schluss, dass die Decarboxylierung durch ein Oxyanion Loch erleichtert wird welches aus zwei katalytischen Histidin Resten besteht. In Kapitel 3.3 wurde der Protonierungszustand der katalytischen Reste im Ruhezustand erneut untersucht da eine aktuelle Benchmarkstudie zeigte, dass die verwendete Semiempirische Methode (RM1) in Kapitel 3.1 dazu tendiert die Stabilisation des zwitterionischen Zustandes zu überschätzen. Auch wurde in Kapitel 3.1 das Lys340/Glu354 Paar als rein ionisch angesehen, während sich in Kapitel 3.2 herausstellte, dass es sich um eine Mischung aus neutralen und ionischen Charakter handelt. Die neuen Untersuchungen beinhalten eine größere QM Region inklusive des Lys340/Glu354 Paares. Der dafür verwendete BLYP/6-31G** Ansatz ist ausreichend akkurat für die aktuelle Fragestellung, was durch Vergleichsrechnungen bewiesen wurde. Die neuen Ergebnisse der QM/MM MD und FEP Rechnungen deuten an, dass die katalytischen Reste im Ruhezustand höchst wahrscheinlich neutral vorliegen. Dies wiederum führt zu der Frage wie KasA aktiviert werden kann um die katalytische Reaktion zu initiieren. Auf der Basis der Ergebnisse der MD Simulationen und FEP Rechnungen für den His311Ala Mutanten in Kapitel 3.1 stellten wir die Hypothese auf, dass die offene Konformation von Phe404 die Aktivierung der katalytischen Reste durch die (Aus)bildung einer starken Wasserstoffbindung einleitet. Die QM/MM MD Simulation bestätigt dass diese Aktivierung der katalytischen Reste durch die offene Konformation des Phe404 bewerkstelligt werden kann. Das entsprechende auf Kraftfeld basierende PMF Profil zeigt auch, dass dieser Konformationswechsel energetisch realisierbar ist. Die Verteilung der hydrophilen und hydrophoben Reste in der Malonyl Bindungstasche in Verbindung mit unseren berechneten Ergebnissen geben einen Einblick in den detaillierten / KasA is a key enzyme which plays an essential part in the biosynthetic pathway of mycolic acids, the building block of cell wall in Mycobacterium tuberculosis. Its importance was demonstrated by the finding that the depletion of KasA leads to the cell lysis of Mycobacterium tuberculosis. Since Mycobacterium tuberculosis is a pathogen of tuberculosis, the second leading cause of death from an infectious disease worldwide, KasA has drawn attention as one of the attractive drug targets against tuberculosis. Due to the emergence of extensively drug-resistant strains which make most of the known antibiotics for treating tuberculosis ineffective, it became an urgent issue to develop new drugs against tuberculosis. In chapter 3.1, the protonation state of the catalytic residues in the resting state was mainly addressed. The FEP computation and MD simulations were employed for this investigation, and the results showed that the zwitterionic state is most probable. To underpin this conclusion with more solid data, The PESs for the proton transfer between the neutral and zwitterionic state were computed in the context of QM/MM. However, due to the strong dependency of the QM/MM optimization on the initial structure, it was not possible to obtain consistent results from these computations. To circumvent this problem, QM/MM based umbrella sampling was carried out with a semi-empirical method (RM1), and the resulting PMF surface indicated that the zwitterionic state is more stable than the neutral state. In chapter 3.2, the protonation state of significant residues in the acyl-enzyme state was investigated. Unlike other catalytic residues, the protonation state of His311 is ambiguous in the acyl-enzyme state, and different decarboxylation mechanisms can be derived depending on the protonation state of His311 in the acyl-enzyme state. Therefore, FEP computations were carried out to find most probable protonation state of His311 in terms of free energy, and the results showed that the pKa value at Nδ is considerably lowered by the enzyme environment while that of Nε is not. Additionally, the PMF profiles for the proton transfer between Lys340 and Glu354 were computed using QM/MM based umbrellas sampling method, and the results showed that the property of the Lys340/Glu354 pair is neutral rather than ionic when His311 is protonated at Nε. Moreover, a relatively larger ionic character of the Lys340/Glu354 pair when His311 is doubly protonated provides a valuable insight into how the Lys340/Glu354 pair plays a role in shifting the protonated state from Nδ to Nε in His311 after the acyl-transfer step. Overall, the results demonstrated that His311 is neutral and protonated at Nε, and the Lys340/Glu354 pair is also neutral in the acyl-enzyme state. Those computational results lead to the conclusion that the decarboxylation reaction is facilitated by an oxyanion hole which is comprised of two catalytic histidines. In chapter 3.3, the protonation state of catalytic residues in the resting state was revisited because a recent benchmark study showed that the employed semi-empirical method (RM1) in chapter 3.1 tends to overestimate the stabilization of the zwitterionic state. Furthermore, the Lys340/Glu354 pair was considered as purely ionic in chapter 3.1, while it actually has a mixed neutral and ionic character as demonstrated in chapter 3.2. The new investigations employed a larger QM region including the Lys340/Glu354 pair with the BLYP/6-31G** approach, which was proven to be accurate enough for the present purpose by benchmark computations. The new results from the QM/MM MD and FEP computations indicated the catalytic residues to be neutral most probably in the resting state, and this in turn brought up the question how KasA can be activated to initiate the catalytic reaction. On the basis of the results from the MD simulations and FEP computations for the His311Ala mutant in chapter 3.1, we hypothesized that the open conformation of Phe404 would trigger the activation of the catalytic residues by the formation of a strong hydrogen bond. The QM/MM MD simulation proved that the activation of the catalytic residues can indeed be accomplished by the open conformation of Phe404 we suggested, and the corresponding force field based PMF profile also indicated that this conformational change is energetically feasible. The distribution of hydrophilic and hydrophobic residues in the malonyl binding pocket in conjunction with our computational results further provided a valuable insight into the detailed process how the catalytic residues is activated upon the substrate entering.

Identiferoai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:6874
Date January 2013
CreatorsLee, Wook
Source SetsUniversity of Würzburg
LanguageEnglish
Detected LanguageEnglish
Typedoctoralthesis, doc-type:doctoralThesis
Formatapplication/pdf
Rightshttps://opus.bibliothek.uni-wuerzburg.de/doku/lic_ohne_pod.php, info:eu-repo/semantics/openAccess

Page generated in 0.0036 seconds