Return to search

Novel Insight into the Autophagy-Independent Functions of Beclin 1 in Tumor Growth

BECN1 is a haploinsufficient tumor suppressor gene that is monoallelically deleted or epigenetically silenced in many human cancers. In breast cancer, 40% of tumors exhibit monoallelic deletion of Beclin 1. Additionally, low Beclin 1 mRNA expression is observed in aggressive breast cancer subtypes and reduced expression is an independent predictor of overall patient survival. The role of Beclin 1 in cancer has almost exclusively been attributed to its function in autophagy. However, our lab demonstrated an alternative role for Beclin 1 in the regulation of growth factor receptor signaling that could contribute to cancer. The goal of my thesis project was to investigate the molecular basis by which Beclin 1 regulates breast tumor growth and progression in vivo.
Using in vivo models, I discovered that Beclin 1 promotes endosomal recruitment of hepatocyte growth factor tyrosine kinase substrate (HRS), which is necessary for sorting receptors to intraluminal vesicles for signal silencing and degradation. Beclin 1-dependent recruitment of HRS results in the autophagy-independent regulation of endocytic trafficking and degradation of the epidermal growth factor (EGFR) and transferrin (TFR1) receptors. When Beclin 1 expression is low, endosomal HRS recruitment is reduced and receptor function is sustained to drive tumor proliferation. An autophagy-independent role for Beclin 1 in regulating tumor metabolism was also observed. Collectively, my results demonstrate a novel role for Beclin 1 in impeding tumor growth by coordinating the regulation of growth promoting receptors. These data provide an explanation for how low levels of Beclin 1 facilitate tumor proliferation and contribute to poor cancer outcomes, independently of autophagy.

Identiferoai:union.ndltd.org:umassmed.edu/oai:escholarship.umassmed.edu:gsbs_diss-2047
Date27 June 2019
CreatorsMatthew-Onabanjo, Asia N.
PublishereScholarship@UMMS
Source SetsUniversity of Massachusetts Medical School
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceGSBS Dissertations and Theses
RightsLicensed under a Creative Commons license, http://creativecommons.org/licenses/by/4.0/

Page generated in 0.0107 seconds