Return to search

Design and Optimization of a Miniature Radiation Pattern Reconfigurable Antenna for 2.4 GHz Band and a Dual Tuned Birdcage Coil for Magnetic Resonance Imaging

This thesis describes development of a miniature reconfigurable antenna and optimization of a dual tuned birdcage coil. The design goals for the miniature reconfigurable antennas are resonance center frequency of 2.44 GHz, bandwidth of 2.4 GHz - 2.48 GHz, size of 0.8 cm x 1.2 cm, radiation efficiency of 70%, pattern correlation coefficient of 0.3 and input impedance of 50 Ω. The main goals to be achieved from the birdcage coil are the better homogeneity and higher signal to noise ratio than the existing coil. The design and optimization of both antenna and birdcage coil were done using simulation software and MATLAB. Wireless communications have progressed rapidly in last decade and communication devices are becoming smaller and smaller. With miniaturization of devices, dimensions of antennas need to be reduced accordingly. In recent years engineers have not only focused on miniaturization but also on the reconfigurability of the antenna. The functionality and performance of an antenna can be greatly improved by a reconfigurable antenna. However, designing such an antenna can be a tricky task. This thesis addresses issues that are faced during design of such miniature reconfigurable antenna. It also describes design and optimization of such an antenna. The modeled and measured results for the miniature reconfigurable antennas were very close except the built antenna requires frequency tuning and better switching technique. Magnetic resonance imaging (MRI) is an imaging modality that provides high quality images. Radio frequency (RF) coils play an important role in MRI. RF coils act like an antenna that transmits RF energy and receives energy as well. The most commonly-used RF coil for volume imaging is the birdcage coil. This thesis describes an optimization of a birdcage coil that is dual tuned for sodium and hydrogen frequencies. The modeled coil has better performance compared to the existing coil.

Identiferoai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-3916
Date09 July 2012
CreatorsAdhikari, Manoj
PublisherBYU ScholarsArchive
Source SetsBrigham Young University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations
Rightshttp://lib.byu.edu/about/copyright/

Page generated in 0.0026 seconds