Return to search

Load Reduction of Floating Wind Turbines using Tuned Mass Dampers

Offshore wind turbines have the potential to be an important part of the United States' energy production profile in the coming years. In order to accomplish this wind integration, offshore wind turbines need to be made more reliable and cost efficient to be competitive with other sources of energy. To capitalize on high speed and high quality winds over deep water, floating platforms for offshore wind turbines have been developed, but they suffer from greatly increased loading. One method to reduce loads in offshore wind turbines is the application of structural control techniques usually used in skyscrapers and bridges. Tuned mass dampers are one structural control system that have been used to reduce loads in simulations of offshore wind turbines. This thesis adds to the state of the art of offshore wind energy by developing a set of optimum passive tuned mass dampers for four offshore wind turbine platforms and by quantifying the effects of actuator dynamics on an active tuned mass damper design.
The set of optimum tuned mass dampers are developed by creating a limited degree-of-freedom model for each of the four offshore wind platforms. These models are then integrated into an optimization function utilizing a genetic algorithm to find a globally optimum design for the tuned mass damper. The tuned mass damper parameters determined by the optimization are integrated into a series of wind turbine design code simulations using FAST. From these simulations, tower fatigue damage reductions of between 5 and 20% are achieved for the various TMD configurations.
A previous study developed a set of active tuned mass damper controllers for an offshore wind turbine mounted on a barge. The design of the controller used an ideal actuator in which the commanded force equaled the applied force with no time lag. This thesis develops an actuator model and conducts a frequency analysis on a limited degree-of-freedom model of the barge including this actuator model. Simulations of the barge with the active controller and the actuator model are conducted with FAST, and the results are compared with the ideal actuator case. The realistic actuator model causes the active mass damper power requirements to increase drastically, by as much as 1000%, which confirms the importance of considering an actuator model in controller design.

Identiferoai:union.ndltd.org:UMASS/oai:scholarworks.umass.edu:theses-1841
Date01 January 2012
CreatorsStewart, Gordon M
PublisherScholarWorks@UMass Amherst
Source SetsUniversity of Massachusetts, Amherst
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceMasters Theses 1911 - February 2014

Page generated in 0.0067 seconds