Return to search

Vibration Reduction of a Semisubmersible Floating Wind Turbine using Optimized Tuned Mass and Tuned Inerter Dampers

Over the past decade, offshore wind has positioned itself as one of the most promising renewable energy markets. While this field is currently dominated by fixed-bottom wind turbines located within a limited depth range, floating turbines are showing promise as a way to capture the more developed wind profiles available in deeper waters. Currently, the main challenge with floating offshore wind is that the systems experience larger ultimate loads compared to fixed bottom turbines. These larger loads are caused by the increased motion inherent with floating structures. This study looks to analyze the effects that traditional and inerter based structural control methods can have on vibration reduction of floating offshore wind turbines. Models are developed adding tuned mass dampers (TMD) and tuned inerter dampers (TID) into the three main columns of a semisubmersible platform. Results showed that for free decay tests, heave and pitch root mean square (RMS) values were reduced significantly by the addition of passive structural control. The inerter based structural control consistently outperformed traditional TMD and also allowed for similar performance with significantly reduced physical mass values. For regular wave excitation both control methods resulted in significant reductions to the heave and pitch RMS values compared to the baseline, with the TID outperforming the TMD . And for an irregular wave analysis, it was found that both control configurations were still able to provide meaningful reductions to the baseline model. / Master of Science / Over the past decade, offshore wind has positioned itself as one of the most promising renewable energy markets. While this field is currently dominated by fixed-bottom wind turbines located within a limited depth range, floating turbines are showing promise as a way to capture the more developed wind profiles available in deeper waters. Currently, the main challenge with floating offshore wind is that the systems experience larger ultimate loads compared to fixed bottom turbines. These larger loads are caused by the increased motion inherent with floating structures. This study looks to analyze the effects that traditional and enhanced motion reduction technology can have on floating offshore wind turbines. Models are developed adding the traditional and enhanced motion reduction technology into the three main columns of a semisubmersible platform. Results showed that for several different tests, the motion reduction technology has a positive effect on the turbines. For test dropping the system from a set height, the motion reduction technology allowed the system to come to rest much faster. Moreover, the enhanced technology performed better than the traditional technology. The same results were found when the system was excited by simulated waves.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/115685
Date07 July 2023
CreatorsLambert, Duncan Langley
ContributorsMechanical Engineering, Zuo, Lei, Tafti, Danesh K., Ogden, David
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
FormatETD, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0022 seconds