The master thesis deals with computational modeling of a turbocharger vibrations and and assessment of influnce of passive dynamic vibration absorber on vibrations of actuator bracket. The use of dynamic vibration absorber was summarized in the research study. The analysis were performed using finite element method in ANSYS. Several computational models of turbocharger were created with different ways of modeling bolted joints between turbocharger parts. Modal analysis of each model was performed and the results were compared. For the selected model, the response to the kinematic excitation from the internal combustion engine for two load conditions was calculated using harmonic analysis. A simple model of vibration dynamic absorber was applied to the turbocharger model with reduced degrees of freedom and its influnce on vibrations of actuator bracket was investigated. Significant decrease of the maximum acceleration amplitude was achieved in a given frequency range when absorber parameters were optimized.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:401530 |
Date | January 2019 |
Creators | Valo, Lukáš |
Contributors | Lošák, Petr, Březina, Lukáš |
Publisher | Vysoké učení technické v Brně. Fakulta strojního inženýrství |
Source Sets | Czech ETDs |
Language | Slovak |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0017 seconds