Recent advancements in iterative processing have allowed communication systems to perform close to capacity limits withmanageable complexity.For manychannels such as the AWGN and flat fading channels, codes that perform only a fraction of a dB from the capacity have been designed in the literature. In this dissertation, we will focus on the design and analysis of near-capacity achieving codes for another important class of channels, namely inter-symbol interference (ISI)channels. We propose various coding schemes such as low-density parity-check (LDPC) codes, parallel and serial concatenations for ISI channels when there is no spectral shaping used at the transmitter. The design and analysis techniques use the idea of extrinsic information transfer (EXIT) function matching and provide insights into the performance of different codes and receiver structures. We then present a coding scheme which is the concatenation of an LDPC code with a spectral shaping block code designed to be matched to the channel??s spectrum. We will discuss how to design the shaping code and the outer LDPC code. We will show that spectral shaping matched codes can be used for the parallel concatenation to achieve near capacity performance. We will also discuss the capacity of multiple antenna ISI channels. We study the effects of transmitter and receiver diversities and noisy channel state information on channel capacity.
Identifer | oai:union.ndltd.org:tamu.edu/oai:repository.tamu.edu:1969.1/2754 |
Date | 01 November 2005 |
Creators | Doan, Dung Ngoc |
Contributors | Narayanan, Krishna |
Publisher | Texas A&M University |
Source Sets | Texas A and M University |
Language | en_US |
Detected Language | English |
Type | Book, Thesis, Electronic Dissertation, text |
Format | 716760 bytes, electronic, application/pdf, born digital |
Page generated in 0.0012 seconds