Return to search

The Influence of Stator Endwall Clearances on Multistage Axial Compressor Aerodynamics

<p dir="ltr">Investigating clearance flows and blockage generation in axial compressors represents a longstanding area of research for enhancing aerodynamic performance and operational stability in turbomachinery. With advancements in computational fluid dynamics (CFD), opportunities to explore these phenomena have expanded, allowing a deeper understanding of the turbomachine's inherently complex and highly unsteady flow fields. This work delves into these topics, focusing on the Purdue 3-Stage (P3S) compressor, an engine-representative, multistage, high-speed compressor.</p><p dir="ltr">The primary objective of this research is to compare the performance and stability characteristics of two distinct stator configurations: a shrouded baseline configuration and a cantilevered stator configuration. This comparison reveals the impacts of clearance flows and blockage generation on compressor operation. Through a series of experimental investigations, this study aims to identify the differences in performance and stability traits between these configurations and the flow structures responsible.</p><p dir="ltr">Experimental characterization has a central role in this study, involving the analysis of leakage flow structures, corner separations, wake structures, and resulting endwall blockage generation. This research seeks to provide detailed insights into the flow phenomena within the compressor by utilizing detailed measurement techniques, such as circumferential interrogation of the flow field using 7-element Kiel-head rakes. Pressure deficits associated with leakage flows, corner separations, and wakes are quantified to assess their impact on compressor performance.</p><p dir="ltr">In conjunction with experimental investigations, this work outlines the development and validation of the supporting high-fidelity CFD models. These models, employing scale-adaptive turbulence model simulations, aim to simulate the flow field within the compressor with accuracy and reliability. Validation of these models against experimental data ensures their fidelity in capturing the complex flow phenomena observed experimentally. Furthermore, a detailed exploration of convergence aspects, including iterative convergence, grid convergence, and periodic-unsteady signals, lays the foundations for building confidence in the model predictions.</p><p dir="ltr">The computational models complement experimental findings, allowing for a comprehensive flow field analysis focusing on endwall flow structures. Visualization of vortex core and three-dimensional blockage regions provides valuable insights into the flow physics governing compressor performance. Moreover, the comparative nature of computational simulations facilitates systematic exploration of geometric changes and their effects on compressor operation. This study leverages complementary methodologies of experimental measurements and high-fidelity computational models to advance the understanding of clearance flows and blockage generation in axial compressors.</p><p dir="ltr">The experimental analysis concludes that the cantilevered configuration achieves better performance and stability than the shrouded stator configuration. However, this conclusion is not apparent when the machine is considered holistically. The cantilevered stages show significant performance improvements, with increases in total pressure ratio of up to 1% and an increase in isentropic efficiency of as much as 2%. However, the common Stage 3 shrouded Stator 3 shows a corresponding deficit of as much as 2% loss in efficiency relative to the fully shrouded stator configuration baseline. These contrasting benefits in the cantilevered stator compressor show that Stage 3 seems to cancel the overall benefits gained by the cantilevered stator. Similar studies have been done on low-speed multistage compressors, but this shows the value of the study in a high-speed research compressor with appreciable stagewise temperature and density increase.</p>

  1. 10.25394/pgs.25679199.v1
Identiferoai:union.ndltd.org:purdue.edu/oai:figshare.com:article/25679199
Date28 April 2024
CreatorsDouglas R Matthews (18433422)
Source SetsPurdue University
Detected LanguageEnglish
TypeText, Thesis
RightsCC BY 4.0
Relationhttps://figshare.com/articles/thesis/The_Influence_of_Stator_Endwall_Clearances_on_Multistage_Axial_Compressor_Aerodynamics/25679199

Page generated in 0.0216 seconds