This thesis reports an experimental investigation of low Reynolds number particle-laden turbulent flows in a horizontal plane channel. Experiments were conducted over a smooth wall and over two rough surfaces made from sand grain and gravel of relative roughness k/h ≈ 0.08 and 0.25, respectively, where k is the roughness height and h is the channel half-height. The flow was loaded with small solid particles with diameters less than 1/10 of the length scale of the energy-containing eddies, and whose concentrations decreased with time due to sedimentation. A novel particle image velocimetry (PIV) method that employed colour filtering for phase discrimination was used to measure the velocities of the fluid and solid particles.
Over the smooth wall, the particles mean velocity, turbulence intensities and Reynolds shear stress matched those of the unladen flow very well. There were substantial differences between particle and fluid profiles over the rough wall, which include more rapid reduction in the particle mean velocity and significantly larger turbulence intensities and Reynolds shear stress compared to the unladen flow values.
Stratification of the particle concentration led to attenuation of the fluid wall-normal turbulence intensity. This effect was nullified by the roughness perturbation leading to collapse of the wall-normal turbulence intensities over the rough wall. The streamwise turbulence intensity also collapsed over the rough wall but it was found that particles augmented the fluid Reynolds shear stress due to enhanced correlation between the rough wall streamwise and wall-normal velocity fluctuations. A quadrant decomposition of the fluid Reynolds shear stress also revealed corresponding enhancements in ejections and sweeps, the dominant contributors to the Reynolds shear stress, over the rough wall.
Based on two-point correlations between the velocity fluctuations and between the velocity fluctuations and swirling strength, it was concluded that both wall roughness and particles modified the turbulence structure by increasing the size of the larger-scale structures. The idea of eddies growing from the wall, thereby enhancing communication between the inner layer and outer parts of the flow, has implications for wall-layer models that assume that the outer layer is detached from the turbulence in the inner region.
Identifer | oai:union.ndltd.org:MANITOBA/oai:mspace.lib.umanitoba.ca:1993/30541 |
Date | 01 June 2015 |
Creators | Tay, Godwin Fabiola Kwaku |
Contributors | Kuhn, David (Mechanical Engineering) Tachie, Mark (Mechanical Engineering), Wang, BingChen (Mechanical Engineering) Clark, Shawn (Civil Engineering) Sullivan, Pierre (Mechanical Engineering, University of Toronto) |
Source Sets | University of Manitoba Canada |
Detected Language | English |
Page generated in 0.0018 seconds