Return to search

Experimental Investigation of Turbulent Flow in a Pipe Bend using Particle Image Velocimetry

The turbulent flow through a 90o pipe bend is complex with secondary flow that can affect pressure drop and heat/mass transfer. The mean and unsteady flow is studied using refractive index matched two-dimensional two-component (2D2C) Particle Image Velocimetry in a single 90o bend with Rc/D = 1.5 and at Re = 34800. The measurements were performed in a closed loop using a 1-inch diameter test section that was machined out of acrylic. The flow is imaged in the symmetric plane parallel to the axial flow and at different cross sectional planes including 0.25D and 1D upstream, 10o, 20o, 70o, 80o from the bend inlet and 0.25D and 1D downstream of the bend.
The axial flow accelerates on the inner wall at the inlet and then moves towards the outer wall at 40o-50o. A shear layer is formed between high velocity fluid near the outer wall and the slower moving fluid at the inner wall side in the second half of the bend. The axial turbulent kinetic energy ((u^2 ) ̅+(v^2 ) ̅) is found to be high in regions corresponding to high velocity gradient regions: (i) at the outer wall near the inlet that extends up to the outlet, (ii) near the inner wall at 40o-50o, and (iii) at the shear layer formed near the inner wall. In the cross sectional planes, two vortices are formed and have a maximum strength at 80o from the bend inlet. The cross sectional turbulent kinetic energy ((v^2 ) ̅+(w^2 ) ̅) is found to be highest on the inner wall at the 80o plane.
The snapshot Proper Orthogonal Decomposition (POD) technique is used to study the unsteady flow structures within the flow. There are long and short flow structures in the upstream pipe which can be related to Very Large Scale and Large Scale Motions. The secondary flow at 20o and further downstream cross sectional planes show evidence of unsteadiness as two vortices oscillate about the symmetry axis with low frequencies of St ~ 0.07, 0.13 and higher frequency at St ~ 0.3-0.6. The low frequency oscillations can be related to Very Large Scale Motions while high frequency oscillations are related to separation of the flow on the inner wall side. Evidence of swirl switching in the high frequency range (St ~ 0.3-0.5) is found at cross sectional plane 1D downstream. / Thesis / Master of Applied Science (MASc)

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/21560
Date January 2017
CreatorsJain, Akshay
ContributorsChing, Chan, Mechanical Engineering
Source SetsMcMaster University
Languageen_US
Detected LanguageEnglish
TypeThesis

Page generated in 0.0025 seconds