Return to search

Novel Atomic Coherence and Interference Effects in Quantum Optics and Atomic Physics

It is well known that the optical properties of multi-level atomic and molecular system can be controlled and manipulated efficiently using quantum coherence and interference, which has led to many new effects in quantum optics for e.g. lasing action without population inversion, ultraslow light, high resolution nonlinear spectroscopy etc. Recent experimental and theoretical studies have also provided support for the hypothesis that biological systems uses quantum coherence. Nearly perfect excitation energy transfer in photosynthesis is an excellent example of this.

In this dissertation we studied quantum coherence and interference effects in the transient and the continuous-wave regimes. This study led to (i) the first experimental demonstration of carrier-envelope phase effects on bound-bound atomic excitation in multi-cycle regime (~15 cycles), (ii) a unique possibility for standoff detection of trace gases using their rotational and vibrational spectroscopic signals and from herein called Coherent Raman Umklappscattering, (iii) several possibilities for frequency up-conversion and generation of short-wavelength radiation using quantum coherence (iv) the measurement of spontaneous emission noise intensity in Yoked-superfluorescence scheme.

Applications of the obtained results are development of XUV (X-Ray) lasers, con- trolled superfluorescent (superradiant) emission, carrier-envelope phase effects, coherent Raman scattering in the backward direction, enhancement of efficiency for generating radiation in XUV and X-Ray regime using quantum coherence with and without population inversion and to extend XUV and X-Ray lasing to ~4.023 nm in Helium-like carbon.

Identiferoai:union.ndltd.org:tamu.edu/oai:repository.tamu.edu:1969.1/ETD-TAMU-2012-08-11688
Date2012 August 1900
CreatorsJha, Pankaj
ContributorsScully, Marlan O.
Source SetsTexas A and M University
Languageen_US
Detected LanguageEnglish
Typethesis, text
Formatapplication/pdf

Page generated in 0.0035 seconds