Recent studies have utilized spanwise traveling waves to alter the turbulent boundary layer with the aim of reducing skin friction drag. Spanwise traveling waves are a promising active drag reduction technique; however, the wave generation methods used in previous studies are bulky and could not be practically implemented. This research has developed an implementable traveling wave generation method and then fundamentally demonstrated how it changes the turbulent boundary layer, which is in a manner consistent with skin friction/shear stress reduction. Traveling waves were generated on a two-dimensional surface using low-profile piezoelectric actuators, in an open-loop fashion, and with minimal frequency limitations. The wave generation method was developed to generate tailored traveling wave patterns; thus, yielding control over the propagation direction, number of wave-fronts, and regions of the surface containing traveling waves. These tailored traveling waves have the capacity not just for affecting the boundary layer, but also for other applications such as propulsion.
The implementable traveling wave generation method was then tested in a low-speed wind tunnel and shown to alter the structure of the turbulent boundary layer. The boundary layer is pushed off the wall, and the viscous sublayer is thickened, indicating a reduction in shear stress. Analysis of the boundary layer at positions phase-locked to the wave oscillation suggests that the traveling waves induce a phase-lag effect in the flow. This phase-lag produces a stretching of the viscous sublayer and may contribute to the skin friction reduction. The effects of standing waves on the turbulent boundary layer were also investigated and compared with traveling waves. The results indicate that both wave types alter the boundary layer in the same manner. Standing waves are simpler to generate than traveling waves, suggesting that standing waves may be an effective skin friction reduction method. Before traveling or standing waves can be implemented, further research is necessary to investigate the interaction between the wave pattern and the turbulent phenomena and also to quantify the skin friction reduction and overall net energy usage. / Ph. D. / Recent studies have utilized spanwise traveling waves to alter the turbulent boundary layer with the aim of reducing skin friction drag. Spanwise traveling waves are a promising active drag reduction technique; however, the wave generation methods used in previous studies are bulky and could not be practically implemented. This research has developed an implementable traveling wave generation method and then fundamentally demonstrated how it changes the turbulent boundary layer, which is in a manner consistent with skin friction/shear stress reduction. Traveling waves were generated on a two-dimensional surface using low-profile piezoelectric actuators, in an open-loop fashion, and with minimal frequency limitations. The wave generation method was developed to generate tailored traveling wave patterns; thus, yielding control over the propagation direction, number of wave-fronts, and regions of the surface containing traveling waves. These tailored traveling waves have the capacity not just for affecting the boundary layer, but also for other applications such as propulsion.
The implementable traveling wave generation method was then tested in a low-speed wind tunnel and shown to alter the structure of the turbulent boundary layer. The boundary layer is pushed off the wall, and the viscous sublayer is thickened, indicating a reduction in shear stress. Analysis of the boundary layer at positions phase-locked to the wave oscillation suggests that the traveling waves induce a phase-lag effect in the flow. This phase-lag produces a stretching of the viscous sublayer and may contribute to the skin friction reduction. The effects of standing waves on the turbulent boundary layer were also investigated and compared with traveling waves. The results indicate that both wave types alter the boundary layer in the same manner. Standing waves are simpler to generate than traveling waves, suggesting that standing waves may be an effective skin friction reduction method. Before traveling or standing waves can be implemented, further research is necessary to investigate the interaction between the wave pattern and the turbulent phenomena and also to quantify the skin friction reduction and overall net energy usage.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/97011 |
Date | 30 August 2018 |
Creators | Musgrave, Patrick Francis |
Contributors | Mechanical Engineering, Tarazaga, Pablo Alberto, Kochersberger, Kevin B., Devenport, William J., Kurdila, Andrew J., Borggaard, Jeffrey T. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Dissertation |
Format | ETD, application/pdf, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.002 seconds