Return to search

Enhanced Two-photon Absorption In A Squaraine-fluorene-squaraine Dye: Design, Synthesis, Photophysical Properties, And Solvatochromic Behavior

The discovery of any new technology is usually accompanied by a need for new or improved materials which make that technology useful in practical applications. In the case of two-photon absorption (2PA) this has truly been the case. Since its first demonstration in 1961, there has been an ever increasing quest to understand the relationships between two-photon absorption and the structure of two-photon absorbing materials. This quest has been motivated by the many applications for 2PA which have been reported, including fluorescence bioimaging, 3D microfabrication, 3D optical data storage, upconverted lasing, and photodynamic therapy. The work presented in this dissertation represents another step in the effort to better understand the structure/property relationships of 2PA. In this work a new, squaraine-fluorenesquaraine molecule, proposed through a joint effort of quantum and synthetic chemists, was synthesized and its photophysical properties were measured. The measurements included linear and two-photon photophysical properties, as well as solvatochromic behavior. Quantum calculations were done to aid in understanding those photophysical and solvatochromic properties. A single squaraine dye was also synthesized and used as a model compound to assist in understanding this new structure. In Chapter 1 an introduction to 2PA and several of its applications is given. Chapter 2 gives a background of 2PA structure/property relationships that have been reported to date, based on work done with polymethine dyes. Chapter 3 gives a full account of the synthesis, characterization, and detailed quantum chemical analyses of this new squaraine-fluorenesquaraine molecule and the corresponding model compound squaraine dye. Chapter 4 gives some additional work and suggested future directions.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd-3891
Date01 January 2013
CreatorsMoreshead, William
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses and Dissertations

Page generated in 0.0021 seconds