Nanoscale materials have great applications in many areas. One of these applications is for manufacturing ultra-compact and efficient sensors for chemical and biological molecule detection. Noble metals, such as gold (Au) and silver (Ag), because of their distinguished optical property"localized surface plasmon resonances (LSPRs) that exhibit low loss, are ideal materials to fabricate these nanoscale plasmonic particles or structures. This work addresses the synthesis, characterization, and sensing applications of Au and Ag nanoparticles (NPs).
The progress on certain subjects related to our work"NP synthesis, surface functionalization, Au sphere-film structure and two-photon fluorescence"are reviewed in Chapter 1. We also show the calculation results of LSPRs of Au nanosphere suspensions using Mie theory. The measured extinction spectra of Au nanosphere suspensions agree with the calculated results very well.
Chapter 2 is a chapter describing the chemical synthesis of a variety of NPs, such as Ag prisms and cubes, Au spheres, rods, and bipyramids. These experiments involved different synthetic mechanisms and methods which enabled us to prepare NPs with desired shapes and optical properties.
To put these NPs into application, it is desirable and sometimes necessary to functionalize their surfaces. In Chapter 3, we present the functionalization of Ag cubes with poly(allylamine hydrochloride) (PAH) and poly(allylamine hydrochloride)-dithiocarbamate (PAH-DTC), which follows our previous work on Au NPs. The purpose of studying Ag instead of Au is to use the stronger plasmonic enhancement in Ag when applied to two-photon imaging applications. However, we found that PAH-DTC shrank the Ag cubes. We also functionalized the cationic hexadecyltrimethylammonium bromide (CTAB)-stabilized Au NRs with anionic poly(sodium 4-styrenesulfonate) (PSS). Coated with the strong polyelectrolyte PSS, the NRs become more manageable and can be stable for over six months and are easily immobilized onto positively charged substrate. We put PSS-functionalized Au NPs into use and studied their adsorption process onto PAH-coated optical fiber tapers by monitoring the transmission light through the fiber. When the diameter of the fiber taper gets smaller, stronger coupling occurred between transmitted light inside the taper and the Au NPs on the taper surface (cylinder). This coupling resulted in a loss of the guided light at the plasmon resonance wavelength of the NPs. By monitoring this loss, we can study the adsorption rate of Au NPs onto the fiber.
In Chapter 4, we used Au nanospheres to study the adsorption rate on substrates with different curvatures. We also established a theoretical model to explain this phenomenon for cylindrical surface as well as planar and spherical surfaces. Our results fit well with the theory, which predicts that particle adsorption rates depend strongly on surface geometry, and can exceed the planar surface deposition rate by over two orders of magnitude when the diffusion length of the particle is large compared to the surface curvature.
In Chapter 5, we studied the optical properties of Au nanospheres separated from a thick Au film by a polyelectrolyte multilayer (PEM) film assembled from PAH and PSS under specific pH condition. The PEM film undergoes swelling and shrinking when the environmental pH is changed as a result of charging and discharging of the polyelectrolytes. Therefore, the PEM film provides an efficient means to tune the distance between Au spheres and Au film. The extinction peak blue-shifted as much as 100 nm when the pH of the water changed from pH 10 to pH 3 for 100 nm diameter Au spheres on a PEM film assembled at pH 9.5. Our preliminary estimates that the gap between sphere and surface can be as small as a few nm even though the film itself is tens of nm thick when it is not constrained by Au spheres.
We studied two-photon excitation fluorescence (TPEF) from Ag triangles in Chapter 6. The triangles were fabricated by nanosphere lithography, which used convective self-assembly to make the nanosphere mask. The LSPRs of the nanotriangles were tuned to be in the 800--900 nm range to match with the Ti:Sapphire pulse laser at 880 nm. We found that certain spots on the fluorescence images gave rise to larger fluorescence intensity than rest of the area. SEM imaging reveals that the unusually bright spots seen on the surface were related to regions where the triangles transformed to spherical particles. The larger intensity is tentatively ascribed to the plasmon resonance of those spherical particles in ~400 nm range. / Ph. D.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/49573 |
Date | 10 December 2012 |
Creators | Jao, Chih-Yu |
Contributors | Physics, Robinson, Hans D., Heflin, James R., Davis, Richey M., Khodaparast, Giti A. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Dissertation |
Format | ETD, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0151 seconds