Return to search

Tent-maps, two-point sets, and the self-Tietze property

This thesis discusses three distinct topics. A topological space X is said to be self- Tietze if for every closed C eX, every continuous f: C -+ X admits a continuous extension F: X -+ X. We show that every disconnected, self- Tietze space is ultranormal. The Tychonoff Plank is an example of a compact self- Tietze space which is not completely normal, and we establish that a completely normal, zero- dimensional, homogeneous space need not be self- Tietze. A subset of the plane is a two-point set if it meets every straight line in exactly two points. We show that a two-point set cannot contain a dense G8 subset of an arc. We also show that the complement of a two-point set is necessarily path-connected. Finally, we construct a zero-dimensional subset of the plane of which the complement is simply-connected. For A E lR, the tent-map with slope A is the function f: [0, 1] -+ lR such that f(x) = AX for x :=:; ~ and f(x) = A(l - x) for x ~ ~. Properties of w-limit sets of tent-maps, i.e. sets of the form n {fn+k(x) I kEN} nEN for x E [0,1], are examined, and an example of a tent-map and a closed, invariant, nonempty, internally chain transitive subset of [0, 1] which is not an w-limit set is given.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:558518
Date January 2011
CreatorsDavies, Gareth
ContributorsKnight, Robin ; Collins, Peter
PublisherUniversity of Oxford
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://ora.ox.ac.uk/objects/uuid:6aaa0726-062a-428c-8dbe-03754c4d5448

Page generated in 0.0022 seconds