Return to search

Molecular analysis of the promoter of an anaerobic-inducible gene arcA in salmonella typhimurium.

by Tam Fung-ping. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1993. / Includes bibliographical references (leaves 254-264). / Chapter I. --- Title page --- p.I / Chapter II. --- Abstract --- p.II / Chapter III. --- Acknowlegements --- p.III / Chapter IV. --- Table of contents --- p.IV / Chapter V. --- List of tables --- p.V / Chapter VI. --- List of figures --- p.VI / Chapter VII. --- Abbreviations --- p.VII / Chapter Chapter 1. --- Literature Reviews / Chapter 1.1 --- Modes of energy generation in facultative bacteria --- p.1 / Chapter 1.1.1 --- Difference in energy generation mechanism between respiratory and fermentative pathways --- p.2 / Chapter 1.1.2 --- Difference in carbon metabolism during anaerobiosis --- p.6 / Chapter 1.2 --- Repression and derepression of genes during anaerobiosis --- p.8 / Chapter 1.3 --- Global regulatory network for respiratory control --- p.8 / Chapter 1.3.1 --- Fnr-regulated gene expression --- p.10 / Chapter 1.3.2 --- NarL-regulated gene expression --- p.11 / Chapter 1.3.3 --- Crp-regulated gene expression --- p.12 / Chapter 1.3.4 --- ArcA-regulated gene expression --- p.13 / Chapter 1.3.5 --- Overlapping control of gene expression --- p.14 / Chapter 1.3.6 --- Regulatory mechanism of respiratory control --- p.16 / Chapter 1.4 --- Other regulatory systems in respiratory control --- p.19 / Chapter 1.5 --- The puzzle of regulatory network in anaerobiosis --- p.22 / Chapter 1.6 --- ArcA-ArcB system in Escherichia coli --- p.24 / Chapter 1.6.1 --- Arc A and ArcB for aerobic respiratory control --- p.24 / Chapter 1.6.2 --- arcA/dye/msp/fex/sfrA/cpxC gene are on identical genetic locus --- p.26 / Chapter 1.6.3 --- Arc function and Sfr function of Arc A protein are separately regulated --- p.28 / Chapter 1.6.4 --- ArcB-ArcA as sensor regulator in two component system for respiratory control --- p.29 / Chapter 1.7 --- Objectives and strategies of present study --- p.37 / Chapter Chapter 2. --- Materials / Chapter 2.1 --- Bacterial strains --- p.41 / Chapter 2.2 --- Culture mediums --- p.44 / Chapter 2.3 --- "Buffers, chemicals and antibiotics" --- p.46 / Chapter 2.4 --- DNA primers --- p.53 / Chapter Chapter 3. --- Primer extension analysis for locating the transcriptional start point of anaerobic inducible arcA in pFS --- p.34 / Chapter 3.1 --- Introduction --- p.55 / Chapter 3.2 --- Methods --- p.57 / Chapter 3.2.1 --- Preparation of total RNA --- p.59 / Chapter 3.2.2 --- Formaldeyde agarose gel electrophoresis of RNA --- p.60 / Chapter 3.2.3 --- Spectrometric estimation of RNA --- p.61 / Chapter 3.2.4 --- End-labelling of arcAusp primer with 32P --- p.62 / Chapter 3.2.5 --- Precipitation of arcAusp primer with samples RNA --- p.63 / Chapter 3.2.6 --- Primer extension reaction --- p.63 / Chapter 3.3 --- Results / Chapter 3.3.1 --- Preparation of RNA --- p.67 / Chapter 3.3.2 --- Determination of transcription start site by primer extension --- p.67 / Chapter 3.4 --- Discussions --- p.76 / Chapter 3.4.1 --- Selective activations of aerobic and anaerobic transcripts in response to oxygen level --- p.76 / Chapter 3.4.2 --- The arcA promoter is a sigma-70 dependent promoter --- p.77 / Chapter 3.4.3 --- Experimental design --- p.77 / Chapter Chapter 4. --- In vitro chemical mutagensis for finding some important regulatory elements of arcA in pFS --- p.34 / Chapter 4.1 --- Introduction / Chapter 4.2 --- Methods --- p.84 / Chapter 4.2.1 --- Large scale preparation of pFS34 plasmid --- p.84 / Chapter 4.2.2 --- PCR-mediated chemical mutagenesis of pFS34 --- p.86 / Chapter 4.2.3 --- Restriction enzyme digestion of PCR-amplified arcA insert after phenol extraction --- p.90 / Chapter 4.2.4 --- Large scale preparation of vector pFZYl and restriction enzyme digestion --- p.91 / Chapter 4.2.5 --- Ligation of EcoRI-SalI digested pFS34 fragment and vector pFZYl --- p.91 / Chapter 4.2.6 --- Preparation of electrotcompetent cell Salmonella typhymurium JR502 and electro-transformation --- p.92 / Chapter 4.2.7 --- Screening of transformed clones by LB-amp50-xgal plates --- p.93 / Chapter 4.2.8 --- Screening of recombinants colonies by Polymerase chain reaction (PCR) --- p.94 / Chapter 4.2.9 --- Screening of single-point mutated clones by PCR-single stranded conformational polymorphism (PCR-SSCP) technique --- p.96 / Chapter 4.2.10 --- Screening of mutated pFS34 clones with altered promoter activities byβ-gal assay --- p.98 / Chapter 4.2.11 --- Sequencing of mutated clones --- p.101 / Chapter 4.2.11.1 --- Recombinant M13 single-stranded sequencing of the mutated clones --- p.101 / Chapter 4.2.11.2 --- pUC18 double-stranded DNA sequencing of mutated clones --- p.105 / Chapter 4.3 --- Results --- p.108 / Chapter 4.3. --- l PCR-mediated chemical mutagenesis of pFS34 --- p.108 / Chapter 4.3.2 --- Screening of transformed clones by LB-amp50-xgal plate --- p.112 / Chapter 4.3.3 --- Screening of recombinants colonies by polymerase chain reaction (PCR) --- p.112 / Chapter 4.3.4 --- Screening of single-point mutated clones by PCR-single stranded conformational polymorphism (PCR-SSCP) technique --- p.114 / Chapter 4.3.5 --- Screening of mutated pFS34 clones with altered promoter activities byβ-gal assay --- p.117 / Chapter 4.3.6 --- Sequencing of mutated clones --- p.123 / Chapter 4.4 --- Discussions --- p.135 / Chapter 4.4.1 --- The possible mechanisms in anaerobic transcription --- p.135 / Chapter 4.4.2 --- The possible mechanisms in aerobic transcription --- p.143 / Chapter 4.4.3 --- Experimental design --- p.146 / Chapter Chapter 5 --- Investigation of the effect of integration host factor (IHF) and autoregulation on the expression of pFS34 / Chapter 5.1 --- Introduction --- p.152 / Chapter 5.2 --- Methods --- p.154 / Chapter 5.2.1 --- Construction of Escherichia coli mutant --- p.155 / Chapter 5.2.2 --- PCR check of mutant for the presence of pFS34 and pFZYl plasmid --- p.157 / Chapter 5.2.3 --- β-galactosidase assay of aerobic and anaerobic activities change of pFS34 --- p.157 / Chapter 5.3 --- Results / Chapter 5.3.1 --- Effect of integration factor (IHF) on pFS34 --- p.158 / Chapter 5.3.1.1 --- PCR analysis of E. coli. himA and himD mutant for the presence of pFS34 and pFZYl plasmid --- p.158 / Chapter 5.3.1.2 --- β-galatosidase assay of aerobic and anaerobic activities of pFS34 in E. coli. himA and himD mutant --- p.158 / Chapter 5.3.2 --- Autoregultion on expression of pFS34 --- p.162 / Chapter 5.3.2.1 --- PCR analysis of E. coli. arcA mutant for the presence of pFS34 plasmid --- p.162 / Chapter 5.3.2.2 --- β-galctosidase assay of aerobic and anaerobic activities of pFS34 (arcA-lacZ) in E. coli. arcA mutant --- p.162 / Chapter 5.4 --- Discussions --- p.167 / Chapter 5.4.1 --- Effect of IHF on aerobic and anaerobic expression of arcA --- p.167 / Chapter 5.4.1.1 --- Possible regulatory mechanism of IHF on aerobic transcription --- p.167 / Chapter 5.4.1.2 --- Possible regulatory mechanism of IHF on anaerobic transcription --- p.170 / Chapter 5.4.1.3 --- Affinity binding of IHF depends on topological state of arcA --- p.172 / Chapter 5.4.1.4 --- Possible role of IHF in global regulation of anaerobiosis --- p.173 / Chapter 5.4.1.5 --- Experimental design --- p.174 / Chapter 5.4.2 --- Autoregulatory expression of arcA in pFS34 --- p.176 / Chapter Chapter 6. --- PCR walking of arcA from Salmonella typhimurium LT2 / Chapter 6.1 --- Introduction --- p.177 / Chapter 6.2 --- Methods --- p.186 / Chapter 6.2.1 --- Preparation of chromosomal DNA from Salmonella typhimurium LT2 --- p.186 / Chapter 6.2.2 --- Amplification of genomic arcA by linear PCR with arcAcds primer --- p.187 / Chapter 6.2.3 --- Low stringency PCR amplification of single-stranded arcA gene fragment and genomic DNA with anchor- random primer (delC-32R & delC-34R) --- p.188 / Chapter 6.2.4 --- High stringency PCR amplification with arcAcds primer and delC-23 primer --- p.189 / Chapter 6.2.5 --- High stringency PCR amplification with arcAusp2 and delC-23 primer --- p.190 / Chapter 6.2.6 --- "High stringency PCR amplification with delC-23 primer only, arcAusp2 primer only and mixture of delC-23 and arcAusp2 primer" --- p.191 / Chapter 6.2.7 --- High stringency PCR amplification with arcAusp2 only and Sau3A restriction enzyme digestion of PCR products --- p.192 / Chapter 6.2.8 --- Cloning of PCR walking products into pUC18 and heat shock transforming into E.coli. JM83 --- p.193 / Chapter 6.2.9 --- Confirmation of inserts in the clones and estimation of inserts size by PCR --- p.194 / Chapter 6.2.10 --- Dideoxy sequencing of PCR walking arcA fragments in pUC18 --- p.194 / Chapter 6.2.11 --- Subcloning of arcA fragment into pFZYl and PCR analysis for insertion of one insert with proper orientation --- p.195 / Chapter 6.2.12 --- arcA-galactosiadase assay of PCR walking arcA fragment-lacZ fusion --- p.196 / Chapter 6.3 --- Results --- p.198 / Chapter 6.3.1 --- Preparation of chromosomal DNA from Salmonella typhimurium LT2 --- p.198 / Chapter 6.3.2 --- Amplification of genomic arcA by linear PCR with arcAcds primer --- p.198 / Chapter 6.3.3 --- Low stringency PCR amplification of single-stranded arcA gene fragment and genomic DNA with anchor- random primer (delC-32R and delC-34R) --- p.200 / Chapter 6.3.4 --- High stringency PCR amplification with arcAcds primer and delC-23 primer --- p.200 / Chapter 6.3.5 --- High stringency PCR amplification with arcAusp2 、 primer and delC-23 prime --- p.203 / Chapter 6.3.6 --- "High stringency PCR amplification with delC-23 primer only, arcAusp2 primer only and mixture of delC-23 and arcAusp2 primer to check for flanking ends of bands" --- p.205 / Chapter 6.3.7 --- High stringency PCR amplification with arcAusp2 primer and Sau3A restriction enzyme digestion of PCR products --- p.207 / Chapter 6.3.8 --- Cloning of PCR walking products into pUC18 and heat-shock transforming into E. coli. JM83 --- p.210 / Chapter 6.3.9 --- Confirmation of inserts in the clones and estimation of inserts size by PCR --- p.210 / Chapter 6.3.10 --- Dideoxy sequencing of arc A PCR walking fragment: :pUC18 --- p.210 / Chapter 6.3.11 --- Subcloning of arcA fragment into pFZYl and PCR check for right insertion of single insert with proper orientation --- p.226 / Chapter 6.3.12 --- β-galactosidase assay --- p.232 / Chapter 6.4 --- Discussions --- p.227 / Chapter 6.4.1 --- PCR based gene walking strategy --- p.227 / Chapter 6.4.2 --- Confirmation of cloned arcA gene in pFS34 was a geniune arcA gene of S. typhimurium --- p.240 / Chapter 6.4.3 --- Promoter activity of further upstream arcA clones - AU87::pFZYl --- p.241 / Chapter Chapter 7. --- Overall Discussion --- p.244 / Chapter 7.1 --- Summary --- p.244 / Chapter 7.2 --- Proposed Model of regulation of arcA in Salmonella typhimurium --- p.249 / Chapter 7.3 --- Further Studies --- p.251 / References --- p.254

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_319192
Date January 1993
ContributorsTam, Fung-ping., Chinese University of Hong Kong Graduate School. Division of Biology.
PublisherChinese University of Hong Kong
Source SetsThe Chinese University of Hong Kong
LanguageEnglish
Detected LanguageEnglish
TypeText, bibliography
Formatprint, vii, 264 leaves : ill. (chiefly mounted) ; 30 cm.
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0031 seconds