Return to search

The influence of snow microstructure and properties on the grip of winter tyres

The friction of tyres on roads has been of practical importance for many years with nearly 80% of terrestrial traffic making use of rubber tyres. Tyres provide the grip required for vehicle acceleration, braking and cornering. In order for a tyre to grip on a snow covered surface friction mechanisms such as “ploughing”, (where sharp tread block edges dig into and break bonds between the snow grains) and fluid film lubrication must be considered. These are not present when a tyre interacts with tarmac. In addition metamorphism of the snow over time can result in variations of the structure and mechanical properties, this can occur rapidly especially when dealing with temperatures close to snows melting point. When full car-scale outdoor testing is carried out the snow conditions cannot be controlled and vary daily. This means the snow properties must be measured every day so that any observed variations in friction can be attributed to the tyres rather than the snow. At present the simple measurements being carried out on the snow tracks have not proved sufficient to pick up on the variations in the snow. This leads to inconsistent results: one tyre behaves differently on two different days, even though the snow was measured to be the same. This has resulted in the need for further study of the way snow variations influence the grip of winter tyres. The primary aim of this study is to identify which snow properties contribute to the friction of tyres on snow and be able to estimate the friction from measurements of snow properties. This work is the first comprehensive study to combine: multiple snow properties, microstructure characterisation, measurement of friction behaviour and different snow (both artificial and natural). In order to study the way snow affects the grip of winter tyres, methods of manufacturing artificial snow with consistent mechanical properties and microstructure are used. A method of blending ice chips (a solid state fracturing process) and compressing the resulting snow to form a test track was developed during a previous PhD carried out in our group. An alternate snow microstructure was created by using an established process of creating snow by vapour deposition. The process was simplified and downscaled, the resulting snow consisted of large dendritic grains, very different to the blended ice chips. Both snows were pressed in identical manners to create snow testing tracks. In addition, natural snow collected from the field was tested to compare with the artificial snow. In order to investigate how the variations in the snow affected the friction of tyres extensive testing was carried out in a cold room using a linear tribometer, using procedures established in previous studies. Two analytical rubber samples were used to investigate the friction, a rounded edge sample and a siped sample. Testing was carried out at -10°C at speeds of 0.01m/s, 0.1m/s and 1m/s. A significant part of this PhD involved the development of new methods and equipment which have not been used to study snow in this way before. In order to characterise mechanical properties, shear testing, compression testing and cohesion testing were carried out. To investigate snow microstructure, surface profilometry, microscopy and X-ray microtomography were used. Correlating the changes observed in snow characteristics with the changes recorded in the coefficient of friction has allowed the development of an empirical equation. This can be used to predict the coefficient of friction of a given snow based on three relatively simple snow measurements: a compression test to calculate the effective modulus, a roughness measurement to calculate the peak count density and a snow penetration test. For the first time this study allows us to use the empirical equation to estimate the relative contributions of the ploughing and surface friction mechanisms to the total friction. This allows the comparison of full car-scale test data as it is now possible to account for variations in the snow test tracks.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:739091
Date January 2017
CreatorsCuthill, Fergus
ContributorsBlackford, Jane ; Koutsos, Vasileios
PublisherUniversity of Edinburgh
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://hdl.handle.net/1842/29534

Page generated in 0.0024 seconds