Return to search

Dose Prediction for Radiotherapy of Advanced Stage Lung Cancer

A dose prediction model for treatment planning was generated using U-Net architecture. The model was generated for advanced stage cancer patients. The U- Net architecture was created with depth=6 and kernel=6. The model architecture was successful to reduce the input image size (192X192) to feature map (6X6) which helped to extract the low level features. The dose prediction of the model was trained with depth=6, kernel=6, MSE loss, Adam optimizer, 1000 epochs and a batch size of 4. The predicted dose was rescaled for gamma analysis to quantify accuracy of the model. The renormalized predicted dose was quantified using gamma analysis with a 3mm, 3% dose tolerance. The gamma map was generated to visualize the regions where dose distributions failed. The gamma percentage values obtained on the training set were acceptable. The mean and standard deviation values of gamma pass percentage obtained on training dataset were 97.5% and 1.24% respectively, which concluded that training process was successful and was an almost perfect match of true dose and predicted dose. However, gamma pass percentage values obtained on validation set was not a good representation of the true dose. Nevertheless, the validation dataset was able to predict the approximate highest dose region. A gamma analysis with a 5mm, 5% dose tolerance was performed to test the the level of discrepancy between the predicted and true dose in the validation set. This increased the gamma pass percentage compared to the 3mm, 3% analysis to a mean gamma pass percentage of 26.2 ± 7.47%. Although the predicted dose was not of sufficient accuracy for clinical use, there technique studied in this work show promise for further development. / Thesis / Master of Science (MSc)

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/26017
Date January 2020
CreatorsSingh, Rachna
ContributorsWierzbicki, Marcin, Health and Radiation Physics
Source SetsMcMaster University
Languageen_US
Detected LanguageEnglish
TypeBook

Page generated in 0.0019 seconds