This work examines the use of convolutional neural networks with a focus on semantic and instance segmentation of cells from microscopic images. The theoretical part contains a description of deep neural networks and a summary of widely used convolutional architectures for image segmentation. The practical part of the work is devoted to the creation of a convolutional neural network model based on the U-Net architecture. It also contains cell segmentation of predicted images using three methods, namely thresholding, the watershed and the random walker.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:449406 |
Date | January 2021 |
Creators | Hrdličková, Alžběta |
Contributors | Chmelík, Jiří, Vičar, Tomáš |
Publisher | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0016 seconds