Return to search

Light entrainment of the circadian clock: the importance of the visual system for adjusting Drosophila melanogaster´s activity pattern / Lichtentrainment der inneren Uhr: Die Bedeutung des visuellen Systems für die Anpassung des Aktivitätsmusters von Drosophila melanogaster

The change of day and night is one of the challenges all organisms are exposed to, as they have to adjust their physiology and behavior in an appropriate way. Therefore so called circadian clocks have evolved, which allow the organism to predict these cyclic changes of day and night. The underlying molecular mechanism is oscillating with its endogenous period of approximately 24 hours in constant conditions, but as soon as external stimuli, so called Zeitgebers, are present, the clocks adjust their period to exactly 24h, which is called entrainment. Studies in several species, including humans, animals and plants, showed that light is the most important Zeitgeber synchronizing physiology and behavior to the changes of day and night. Nevertheless also other stimuli, like changes in temperature, humidity or social interactions, are powerful Zeitgebers for entraining the clock. This thesis will focus on the question, how light influences the locomotor behavior of the fly in general, including a particular interest on the entrainment of the circadian clock. As a model organism Drosophila melanogaster was used.
During the last years several research groups investigated the effect of light on the circadian clock and their results showed that several light input pathways to the clock contribute to wild-type behavior. Most of the studies focused on the photopigment Cryptochrome (CRY) which is expressed in about half of the 150 clock neurons in the fly. CRY is activated by light, degrades the clock protein Timeless (TIM) and hence entrains the clock to the light-dark (LD)-cycle resulting from changes of day and night. However, also flies lacking CRY are still able to entrain their clock mechanism as well as their activity-rest-rhythm to LD-cycles, clearly showing that the visual system of the fly also contributes to clock synchronization. The mechanism how light information from the visual system is transferred to the clock is so far still unknown. This is also true for so-called masking-effects which are changes in the behavior of the animal that are directly initiated by external stimuli and therefore independent of the circadian clock. These effects complement the behavior of the animals as they enable the fly to react quickly to changes in the environment even during the clock-controlled rest state.
Both of these behavioral features were analyzed in more detail in this study. On the one hand, we investigated the influence of the compound eyes on the entrainment of the clock neurons and on the other hand, we tried to separate clock-controlled behavior from masking. To do so "nature-like" light conditions were simulated allowing the investigation of masking and entrainment within one experiment. The simulation of moonlight and twilight conditions caused significant changes in the locomotor behavior. Moonlit nights increased nocturnal activity levels and shifted the morning (M) and evening (E) activity bouts into the night. The opposite was true for the investigation of twilight, as the activity bouts were shifted into the day. The simulation of twilight and moonlight within the same experiment further showed that twilight appears to dominate over moonlight, which is in accordance to the assumption that twilight in nature is one of the key signals to synchronize the clock as the light intensity during early dawn rises similarly in every season. By investigating different mutants with impaired visual system we showed that the compound eyes are essential for the observed behavioral adaptations. The inner receptor cells (R7 and R8) are important for synchronizing the endogenous clock mechanism to the changes of day and night. In terms of masking, a complex interaction of all receptor cells seems to adjust the behavioral pattern, as only flies lacking photopigments in inner and outer receptor cells lacked all masking effects. However, not only the compound eyes seem to contribute to rhythmic activity in moonlit nights. CRY-mutant flies shift their E activity bout even more into the night than wild-type flies do. By applying Drosophila genetics we were able to narrow down this effect to only four CRY expressing clock neurons per hemisphere. This implies that the compound eyes and CRY in the clock neurons have antagonistic effects on the timing of the E activity bout. CRY advances activity into the day, whereas the compound eyes delay it. Therefore, wild-type behavior combines both effects and the two light inputs might enable the fly to time its activity to the appropriate time of day.
But CRY expression is not restricted to the clock neurons as a previous study showed a rather broad distribution within the compound eyes. In order to investigate its function in the eyes we collaborated with Prof. Rodolfo Costa (University of Padova). In our first study we were able to show that CRY interacts with the phototransduction cascade and thereby influences visual behavior like phototaxis and optomotor response. Our second study showed that CRY in the eyes affects locomotor activity rhythms. It appears to contribute to light sensation without being a photopigment per se. Our results rather indicate that CRY keeps the components of the phototransduction cascade close to the cytoskeleton, as we identified a CRY-Actin interaction in vitro. It might therefore facilitate the transformation of light energy into electric signals.
In a further collaboration with Prof. Orie Shafer (University of Michigan) we were able to shed light on the significance of the extraretinal Hofbauer-Buchner eyelet for clock synchronization. Excitation of the eyelet leads to Ca2+ and cAMP increases in specific clock neurons, consequently resulting in a shift of the flies´ rhythmic activity.
Taken together, the experiments conducted in this thesis revealed new functions of different eye structures and CRY for fly behavior. We were furthermore able to show that masking complements the rhythmic behavior of the fly, which might help to adapt to natural conditions. / Der Wechsel von Tag und Nacht stellt für viele Organismen eine große Herausforderung dar, da sie ihre Physiologie und auch das Verhalten den äußeren Gegebenheiten anpassen müssen. Um dieser Aufgabe gerecht zu werden, haben viele Organismen innere Uhren entwickelt, welche es ihnen erlauben, den Wechsel von Tag und Nacht vorherzusehen. Diesen inneren Uhren liegt ein molekularer Mechanismus zugrunde, welcher einen Rhythmus von etwa 24 Stunden generiert. Eine wichtige Eigenschaft dieser Uhren ist es, dass sie durch äußere Faktoren, so genannte Zeitgeber, an den Tag-Nacht-Wechsel angepasst werden können. Viele Studien an Mensch, Tier und Pflanze weisen darauf hin, dass Licht der wichtigste Zeitgeber ist, wobei auch Temperatur, Luftfeuchtigkeit oder soziale Interaktionen die innere Uhr an den Tag-Nacht-Wechsel anpassen können. Ziel dieser Arbeit ist es, die Auswirkung von Licht auf das Lauf-verhalten und die innere Uhr genauer zu beleuchten, wozu der Modellorganismus Drosophila melanogaster herangezogen wird.
Zahlreiche Forschergruppen haben sich bereits mit der Synchronisation der inneren Uhr durch Licht beschäftigt, wobei klar hervorgeht, dass die Taufliege verschiedene Möglichkeiten hat, Lichtinformationen für die Synchronisation der Uhr zu verwenden. Der wohl am besten untersuchte Prozess ist die Synchronisation durch das Pigment Cryptochrom. Dieses Molekül ist in etwa der Hälfte der Uhrneuronen exprimiert und greift direkt in den molekularen Uhrmechanismus ein, wodurch dieser an den Tag-Nacht-Wechsel angepasst werden kann. Schaltet man jedoch das Gen für dieses Molekül aus so zeigt sich, dass die Tiere dennoch dazu in der Lage sind sich an den Licht-Dunkel-Wechsel anzupassen. Dies bedeutet, dass die visuellen Organe Informationen an die innere Uhr weiterleiten können, wobei der Mechanismus dafür noch nicht vollständig entschlüsselt werden konnte. Selbiges trifft auf sogenannte Maskierungseffekte zu: Maskierung beschreibt eine Veränderung des Verhaltensmusters, welches nicht durch die innere Uhr gesteuert, sondern direkt durch äußere Reize hervorgerufen wird. Diese direkten Effekte komplettieren das Verhalten der Tiere, da sie dadurch selbst zu endogen ungünstigen Zeiten adäquat auf äußere Reize reagieren können.
In dieser Arbeit wird sich beider Phänomene angenommen: Zum einen soll die Bedeutung des visuellen Systems für die Synchronisation der inneren Uhr genauer untersucht, und zum anderen soll uhrgesteuertes Verhalten von Maskierung getrennt werden. Zu diesem Zweck wurden Lichtbedingungen simuliert, die den natürlichen ähnelten und die Untersuchung beider lichtabhängiger Effekte ermöglichten. Die Untersuchung von Dämmerung und Mondlicht zeigte deutlich, dass diese starke Veränderungen im Lauf-Verhalten hervorrufen. Die Simulation von Mondlicht bewirkte einen Anstieg der Nachtaktivität und ein Verschieben der Aktivitätsmaxima der Fliege in die Nacht. Das Gegenteil war bei Dämmerungssimulation zu beobachten, da die Tiere mehr Aktivität in den Tag legten. Bei gleichzeitiger Simulation von Mondlicht und Dämmerungsphasen zeigte sich, dass die Dämmerung ein stärkerer Zeitgeber ist als Mondlicht ist. Dieses Ergebnis geht einher mit der Annahme, dass die Dämmerung ein wichtiges Signal für die Synchronisation der inneren Uhr ist, da der Anstieg der Lichtintensität am frühen Morgen unabhängig von der Jahreszeit sehr ähnlich ist. Die Untersuchung von verschiedensten Mutanten konnte zudem zeigen, dass die Komplexaugen der Fliege von größter Bedeutung für die beobachteten Veränderungen im Verhaltensmuster und die Anpassung der inneren Uhr an "natürliche" Lichtbedingungen sind. Dabei stellte sich heraus, dass vor allem die inneren Rezeptorzellen wichtig für die Synchronisation der inneren Uhr und somit uhrgesteuerter Verhaltensänderungen sind. Für Maskierungseffekte scheint eine komplexe Interaktion von mehreren Rezeptorzellen für die Anpassung an Dämmerungs- und Mondlichtbedingungen vorzuliegen, da diese nur bei Mehrfachmutationen verschiedener Rhodopsine, den lichtabsorbierenden Molekülen der Fliege, verschwanden. Jedoch scheinen nicht nur die Komplexaugen das rhythmische Verhalten in Mondlichtnächten zu beeinflussen. Wird das Gen für Cryptochrom, dem Photorezeptor der inneren Uhr, ausgeschaltet, verschieben die Tiere ihre Abendaktivität noch stärker in die Nacht als es bereits beim Wildtyp der Fall ist. Durch verschiedene genetische Manipulationen konnten wir den Grund dieses Verhaltens auf die Expression von Cryptochrom in nur vier Uhrneuronen pro Hemisphäre zurückverfolgen. Zugleich zeigten unsere Ergebnisse, dass die Komplexaugen und Cryptochrom entgegengesetzte Wirkung auf das Timing der Abendaktivität haben. Während die Komplexaugen die Abendaktivität in die Nacht hinein schieben, bewirkt Cryptochrom, dass die Aktivität noch während des Tages stattfindet. Dies bedeutet, dass das wildtypische Verhalten eine Mischung aus beiden Lichteingängen ist und sich die Tiere somit ideal an die äußeren Gegebenheiten anpassen können.
Cryptochrom wird jedoch nicht nur in den Uhrneuronen, sondern unter anderem auch in den Komplexaugen der Tiere exprimiert. Um die Funktion in den Augen genauer zu untersuchen, konnten wir in Kollaboration mit Prof. Rodolfo Costa (University of Padova) zunächst zeigen, dass CRY mit der Phototransduktionskaskade über das Protein INAD interagiert und dadurch visuelles Verhalten, wie zum Beispiel Phototaxis oder die optomotorische Antwort, beeinflussen kann. In weiteren Experimenten konnten wir zudem zeigen, dass CRY in den Augen die lokomotorische Aktivität der Fliegen beeinflusst. Dabei trägt es zur Wahrnehmung von Licht bei, ohne jedoch per se ein Photopigment zu sein. Vielmehr scheint CRY die Phototransduktion dahingehend zu verändern, dass es den Phototransduktionskomplex an das Cytoskelett innerhalb der Rhabdomere bindet und somit die Umwandlung von Lichtenergie in elektrische Signale erleichtert.
Zusammen mit Prof. Orie Shafer (University of Michigan) ist es uns zudem gelungen, die Rolle des extraretinalen Hofbauer-Buchner-Äugleins für die Synchronisation der Uhr genauer zu beleuchten. Die Anregung des Äugleins führte dabei zu einem Anstieg der Ca2+ und cAMP Mengen in bestimmten Uhrneuronen und dies bewirkte eine Phasenverschiebung des Verhaltens der Taufliege.
Somit konnten in dieser Arbeit neue Erkenntnisse über die Funktionen von Cryptochrom und verschiedener Augenstrukturen für das Verhalten der Fliege gewonnen werden. Dabei konnten die Bedeutungen der inneren Uhr sowie von Maskierungseffekten für das Verhalten der Tiere in der Natur herausgearbeitet werden.

Identiferoai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:11445
Date January 2015
CreatorsSchlichting, Matthias
Source SetsUniversity of Würzburg
LanguageEnglish
Detected LanguageEnglish
Typedoctoralthesis, doc-type:doctoralThesis
Formatapplication/pdf
Rightshttps://opus.bibliothek.uni-wuerzburg.de/doku/lic_ohne_pod.php, info:eu-repo/semantics/openAccess

Page generated in 0.0033 seconds