The manufacturing of UHTC materials has significantly advanced over recent years, allowing for the development of new microstructures, architectures, shapes, and geometries to explore new properties and applications for these materials beyond aerospace. One of the UHTCs, titanium diboride (TiB2) exhibits high electrical and thermal conductivity that could satisfy the needs of functional ceramic component applications, like battery cathodes, by tailoring its microstructure and architecture. This thesis represents one of the first detailed studies to understand how the processing-microstructure-properties relationship of TiB2 can be shifted to explore new applications. In order to do that, TiB2 has been manufactured with a processing technique never used before, with significant porosity, exploration of which has been very limited for this material. Additionally, this thesis also explores the synthesis and utilization of novel anisotropic particles to further explore this material relationship.
In this work, aqueous tape casting of TiB2 has been investigated. Zeta potential measurements and suspension rheology were used to understand the role of dispersant, binder and plasticizer in the suspension and their interaction with the surface chemistry of the TiB2 particles to develop a stable, homogenous suspension, with minimum additive amounts (0-2 wt%). Homogeneous, flexible and strong TiB2 tapes were prepared using suspensions with 30 vol% solids and characterized to compare different compositions, mixing methods, and thicknesses. The characterization shows the tailoring of the properties as a function of the controlled suspension formulation with minimum amount of additives. Green tapes with 2 wt% dispersant, 1 wt% binder, and 2 wt% plasticizer had similar microstructure to those with half the plasticizer but quintuple the Young's modulus (1.96 GPa). The effect on other relevant properties is also discussed.
Tape casting aligns anisotropic particles along the direction of casting, which can be taken advantage of for increasing fracture toughness directionally or producing aligned pore networks using sacrificial fillers. The relationship between alignment, porosity, and the mechanical properties of titanium diboride has not been studied. In this work, we characterize the porous sintered bodies produced through aqueous tape casting of non-spherical TiB2 particles of aspect ratio close to 1, as well as composites with an added high aspect ratio particle (2 wt% PCN-222). Synthesis of uniform, spherical ZrC is difficult and generally not cost-effective, as is the case for most ultra-high temperature ceramics. High aspect ratio particles for reinforcement of ceramic composites are even more difficult to synthesize. Metal organic frameworks (MOF) are crystalline coordination polymers composed of multidentate organic linkers bridging metal nodes to form porous structures. Thermal decomposition of MOFs presents a new and cost-effective route to synthesis of ZrC. In this study, heat treatment at 2000°C of MOF PCN-222 produces zirconium carbide (ZrC) within a highly anisotropic particle. The resulting rod-shaped, glass-like carbon matrix embedded with ZrC crystals is described. These rods have potential as reinforcements for iii high temperature applications and as a synthetic route for ultra-high temperature ceramics with unique morphologies. It is the first time that this type of transformation from a MOF into a UHTC has been reported.
We have determined through analysis of SEM images that regardless of tape casting speed, about 57% of the TiB2 particles are aligned with the tape casting direction. The mechanical properties are dominated by the effects of the porosity (38%), but the alignment exhibited here could be further exploited for anisotropic behavior across the sintered tapes. Composites cast with high aspect ratio particles exhibited strong alignment in the casting direction. Further work is required to understand the interplay between alignment and porosity and their effects on material properties. / Doctor of Philosophy / Titanium diboride (TiB2) is an ultra-high temperature ceramic with a melting point of 3225°C. Many applications for this material require fully dense structural ceramics, such as cutting tools,1 armor,2 and high temperature structural supports.2,3 These applications rely mainly on the high mechanical strength of TiB2, which is maintained in extreme thermal and chemical environments. The field of knowledge surrounding TiB2 lacks information about the ways that porosity affects its otherwise well-known properties;4,5 to bridge this gap could open up applications for functional and porous ceramics such as lithium-air batteries,6 electrochemical components,7 semiconductors,8 and more. This work intends to provide a foundation for this endeavor by developing for the first time a colloidal suspension formulation that allows for the tape casting of TiB2 and characterizing the resulting porous ceramics.
Among these new potential applications, many require thin ceramics less than 1 mm thick—a result which has been accomplished for other materials via tape casting.4,9 This is a wet route of producing ceramics that provides the ability to tailor the surface chemistry of the particles, giving greater control over the stability of the suspension (TiB2 particles suspended in water) and quality of the end product than is afforded by dry processing routes.10 This also allows for more complex shaping than simple pressing, which ultimately saves costs; by producing the near-net shape in the green body before firing, less machining must be done to the sintered body when it is removed from the high temperature furnace.11 In tape casting, the suspension is spread over a substrate by a doctor blade to the desired thickness. It is known that tape casting tends to align anisotropic particles along the direction of casting due to a nonuniform velocity imparted by the shear force of the doctor blade spreading the suspension, an advantage which can provide directional properties in the final ceramic.9 While this process is well known, it has never been applied to the material TiB2 prior to this work.
In this work, a suspension is formulated to allow for the tape casting of TiB2 with minimum organic additive content, which is cost-effective and reduces potential for defects. Porosity and alignment in the tape cast specimens are characterized. For comparison, a highly anisotropic or rod-shaped particle (PCN-222, a metal organic framework material) was included in the TiB2 suspensions for tape casting. This metal organic framework (MOF) has been transformed into a high temperature material after thermal treatment at the sintering temperature of 2000°C, showing that the resulting particle is made of glass-like carbon embedded with zirconium carbide (ZrC) crystallites. This particle could be used as a reinforcement for ultra-high temperature ceramics, and in this work was shown to align strongly in the tape casting direction.
At the level of porosity (38%) and alignment (57%) in the TiB2 specimens in this study, porosity dominates the mechanical properties. This relationship is shown to be more complicated than lowering the strength by the same proportion that the density is lowered, and various models for understanding the role of porosity on the elastic modulus are explored.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/116245 |
Date | 07 September 2023 |
Creators | Shirey, Kaitlyn Ann |
Contributors | Materials Science and Engineering, Tallon Galdeano, Carolina, Morris, Amanda, Lu, Guo Quan, Qiao, Rui |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Language | English |
Detected Language | English |
Type | Dissertation |
Format | ETD, application/pdf, application/pdf, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.003 seconds