Return to search

Investigation of Low Optical-Gap Donor and Acceptor Materials for Organic Solar Cells

Development of efficient and clean energy sources to meet the ever-increasing de- mand of humankind is one of the greatest challenges of the 21st century. There is a dire need to decarbonise the power sector, and the focus needs to shift to re- newable resources such as wind and solar energy. In this regard, organic solar cells are a promising and novel technology owing to its low carbon footprint, innovative applications, and possible integration into the current infrastructure. Due to its unique advantages, a considerable research effort has been put into its development in the last decades. As a result, the power conversion efficiency (PCE) of the organic photovoltaics has steadily risen from as low as 0.5% to around 17 % at the current stage. This improvement primarily originates from the better understanding of the underlying physical processes and as a result of extensive material development.
In the most general case, organic solar cells consist of a binary blend of an electron donating and an electron accepting organic semiconductor forming the so-called ‘bulk-heterojunction’ (BHJ) morphology. Thermodynamics places an upper limit on the power conversion efficiency (PCE) of binary blend BHJ devices and for further enhancement in efficiency novel device concepts like the use of ternary blends and tandem device architectures is being investigated. In relation to these approaches, the development of low optical-gap (Eopt ≤ 1.5 eV) organic semiconductors has gained importance as these materials provide for the complementary absorption with respect to the other components and better harvesting of the solar spectrum.
This work mainly deals with the investigation of low optical gap donor and acceptor materials for organic solar cells. We investigate the effect of the molecular structure on the device performance and the photophysical processes in the binary and ternary blend configuration. In the first part of the thesis, we study a family of low optical- gap diketopyrrolopyrrole (DPP) based polymers while varying the conjugated core and the branching position and length of the solubilizing alkyl side chains. The branching position of the side chains is found to have a significant influence on the polymers ability to crystallize, which in turn influences the mobility of free charge carriers. The branching position also affects the solubility of the polymer, which in turn influences the morphology of the bulk-heterojunction (BHJ) and ultimately the yield of photogenerated charge carriers.
To investigate the electron transfer and charge separation dynamics in the blends consisting of DPP polymers and fullerene, we employed ultrafast pump-probe spec- troscopic techniques. In the spectroscopy data, we observe signatures suggesting an ultrafast electron transfer process and an efficient charge separation process due to the high mobility of the free charge carriers shortly after separation (∼10-100 ps).

Lastly, we investigated indacenodithiophene (IDT) based non-fullerene acceptor (NFA) molecules. In particular, we studied the effect of fluorination on the device performance when these acceptors are blended with PTB7-Th and P3HT donor polymers. The kinetics of the photophysical processes in the binary and ternary blends are characterized using ultrafast spectroscopy and related to the morphology of the blend and the molecular structure of the acceptors.
Overall, we investigated the structural variations in the DPP polymers and flu- orinated non-fullerene acceptor (NFA) molecules and suggest design rules for the synthesis of optimal DPP polymers and non-fullerene acceptors to achieve supe- rior device performance. Additionally, we also shed light on the phenomenological processes happening on an ultrafast time scale (0.2-1000 ps) in the binary and the ternary blends with the aim of developing a better understanding of the photophys- ical processes in these promising material systems.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:38031
Date29 January 2020
CreatorsShivhare, Rishi Ramdas
ContributorsMannsfeld, Stefan C. B., Banerji, Natalie, Technische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0022 seconds