Health monitoring of aeronautic structures and human beings is becoming crucial because of the human safety issues. In this thesis integrated (IUTs) and flexible ultrasonic transducers (FUTs) have been developed using a sol-gel spray piezoelectric film fabrication technology. IUTs can be fabricated directly onto the structures with curved surfaces even on-site. FUTs were made using membrane substrates of thickness less than 75 mum. In-situ monitoring of AI airframe thickness was carried out and the thickness measurement accuracy was better than 36 mum and 41 mum for IUT and FUT, respectively. The thickness of the ice on top of the AI airframe was also measured. Two crucial piezoelectric constants d33 and d31 of the composite film were measured with laser interferometer and optical coherence tomography system, respectively. Pulse and breath of a human being were also monitored using flexible piezoelectric membrane sensors. In addition, bones in human body were observed using FUTs as well and their performance is comparable to that of commercial ultrasonic transducers.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.116018 |
Date | January 2008 |
Creators | Liu, Qingli, 1973- |
Publisher | McGill University |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Format | application/pdf |
Coverage | Master of Engineering (Department of Electrical and Computer Engineering.) |
Rights | All items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated. |
Relation | alephsysno: 002841664, proquestno: AAIMR66954, Theses scanned by UMI/ProQuest. |
Page generated in 0.0018 seconds