Return to search

Potential Use of Umbilical Cord Blood Cells in Spinal Cord Injury

Spinal cord injury (SCI) pathophysiology occurs as a primary traumatic event followed by secondary injury, resulting in the loss of neurons, oligodendrocytes and demyelination of residual axons. Unfortunately, endogenous spontaneous regeneration of oligodendrocytes is minimal. Previously, a method to generate multi-potential stem cells (MPSC) from umbilical cord blood (UCB) has been reported using lineage negative cells (Linneg) grown in fibroblast growth factor 4 (FGF4), stem cell factor (SCF) and fms-like tyrosine kinase receptor-3 ligand (Flt-3l) supplemented serum free medium. These MPSC have the ability to differentiate into bone, muscle and endothelial cells. In this thesis, the ability of MPSC to differentiate into oligodendrocytes was investigated as a potential treatment for SCI. Culturing MPSC under conditions that mimic normal timing of oligodendrocyte differentiation resulted in cells that expressed oligodendrocyte markers in vitro and were morphologically similar to them. I next investigated the ability of MPSC to improve functional recovery in a SCI compression injury model. Although the cells did not differentiate into oligodendrocytes in vivo as we initially hypothesised, a modest but significant improvement in hindlimb function was observed. A cytokine assay revealed that MPSC secrete elevated levels of anti-inflammatory, angiogenic and neurotrophic factors, possibly contributing to indirect mechanisms of repair by reducing secondary injury. Shiverer mouse neonates were next used as an alternative non-injury model to investigate the differentiation potential of MPSC. We hypothesised that transplanting MPSC into a host with an immature immune system and an actively myelinating environment would lead to engraftment and differentiation into oligodendrocytes. However no MPSC that differentiated into oligodendrocytes could be detected. Altogether, our in vitro data adds support for the reprogramming of cells, with further studies needed to test the functionality of resulting oligodendrocyte-like cells. Although MPSC failed to differentiate in both in vivo models, several potential therapeutic targets to treat SCI were found.

Identiferoai:union.ndltd.org:TORONTO/oai:tspace.library.utoronto.ca:1807/29687
Date30 August 2011
CreatorsChua, Shawn Julian
ContributorsCasper, Robert
Source SetsUniversity of Toronto
Languageen_ca
Detected LanguageEnglish
TypeThesis

Page generated in 0.0019 seconds