The process developed herein uses a Multiple Objective Genetic Optimization (MOGO) algorithm. The optimization is implemented in ModelCenter (MC) from Phoenix Integration. It uses a genetic algorithm that searches the design space for optimal, feasible designs by considering three Measures of Performance (MOPs): Cost, Effectiveness, and Risk. The complete synthesis model is comprised of an input module, the three primary AUV synthesis modules, a constraint module, three objective modules, and a genetic algorithm. The effectiveness rating determined by the synthesis model is based on nine attributes identified in the US Navy's UUV Master Plan and four performance-based attributes calculated by the synthesis model. To solve multi-attribute decision problems the Analytical Hierarchy Process (AHP) is used. Once the MOGO has generated a final generation of optimal, feasible designs the decision-maker(s) can choose candidate designs for further analysis. A sample AUV Synthesis was performed and five candidate AUVs were analyzed. / Master of Science
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/33291 |
Date | 26 June 2008 |
Creators | Martz, Matthew |
Contributors | Aerospace and Ocean Engineering, Neu, Wayne L., Stilwell, Daniel J., Brown, Alan J. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Relation | MartzThesisRev1.pdf |
Page generated in 0.0022 seconds