In this thesis we demonstrate a technique for robust controller design for an autonomous underwater vehicle (AUV) that explicitly handles the trade-off between reference tracking, agility, and energy efficient performance. AUVs have many sources of modeling uncertainty that impact the uncertainty in maneuvering performance. A robust control design process is proposed to handle these uncertainties while meeting control system performance objectives. We investigate the relationships between linear system design parameters and the control performance of our vehicle in order to inform an H∞ controller synthesis problem with the objective of balancing these tradeoffs. We evaluate the controller based on its reference tracking performance, agility and energy efficiency, and show the efficacy of our control design strategy. / Master of Science / In this thesis we demonstrate a technique for autopilot design for an autonomous underwater vehicle (AUV) that explicitly handles the trade-off between three performance metrics. Mathematical models of AUVs are often unable to fully describe their many physical properties. The discrepancies between the mathematical model and reality impact how certain we can be about an AUV's behavior. Robust controllers are a class of controller that are designed to handle uncertainty. A robust control design process is proposed to handle these uncertainties while meeting vehicle performance objectives. We investigate the relationships between design parameters and the performance of our vehicle. We then use this relationship to inform the design of a controller. We evaluate this controller based on its energy efficiency, agility and ability to stay on course, and thus show the effectiveness of our control design strategy.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/110317 |
Date | 24 May 2022 |
Creators | Kleiber, Justin Tanner |
Contributors | Electrical and Computer Engineering, Stilwell, Daniel J., Williams, Ryan K., Doan, Thinh Thanh |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Language | English |
Detected Language | English |
Type | Thesis |
Format | ETD, application/pdf, application/pdf |
Rights | Creative Commons Attribution 4.0 International, http://creativecommons.org/licenses/by/4.0/ |
Page generated in 0.0163 seconds