This thesis is concerned with automata over infinite trees. They are given a labeled infinite tree and accept or reject this tree based on its labels. A generalization of these automata with binary decisions are weighted automata. They do not just decide 'yes' or 'no', but rather compute an arbitrary value from a given algebraic structure, e.g., a semiring or a lattice. When passing from unweighted to weighted formalisms, many problems can be translated accordingly. The purpose of this work is to determine the feasibility of solving the inclusion problem for automata on infinite trees and its generalization to weighted automata, the infimum aggregation problem.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:88802 |
Date | 03 January 2024 |
Creators | Borgwardt, Stefan |
Contributors | Peñaloza Nyssen, Rafael, Baader, Franz, Technische Universität Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/acceptedVersion, doc-type:masterThesis, info:eu-repo/semantics/masterThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0018 seconds