Return to search

Druckwechseladsorption als Wasserstoffreinigungsverfahren fuer Brennstoffzellen-Systeme im kleinen Leistungsbereich / Pressure Swing Adsorption as hydrogen purification process for small scale fuel cell systems

Fuel cells are high efficient energy production systems producing heat and electrical power. Especially PEM fuel cells (Polymeric Electrolyte Membrane) require pure hydrogen for operation. Hydrogen is produced e.g. by reforming of hydrocarbons like natural gas or ethanol. During the production of hydrogen carbon monoxide is formed. CO is a harmful poison for the platinum catalsyst of the fuel cell electrodes. Therefore hydrogen has to be purified. The goal of this work was to develop a pressure swing adsorption for small scale fuel cell systems. The hydrogen to be purified is produced by reforming bio-ethanol. The PSA is designed for a quite low adsorption pressure of 7 bar and a small thermal hydrogen power for fuel cell systems in a range of 1 kW electrical. For the design of the PSA a simplified method of calculating the bed height of the adsorbers was developed. Most scientists working in the field of pressure swing adsorption use mathematical models of breakthrough curves for PSA calculations. But these models can only be solved numerically. The results of these simulations are approved by performing test at lab-scale PSA. Main focus on the tests is set to the breakthrough time and the shape of the breakthrough curves. The calculation method developed in this work is also verified by test. But no breakthrough curves were taken up and no breakthrough time of the unwished gas component (CO) was measured. Only the hydrogen quality and the hydrogen recovery rate even after several adsorption cycles were the dominating criteria for the approval of the calculation model. The PSA tests showed that the required hydrogen quality (less than 10 ppmv CO in hydrogen) for PEM-fuel cells was reached even after a 20 adsorption cycles (one cycle lasted 12 minutes with 3 minutes adsorption). The tests were performed on several days in series without changing the adsorbents or purging them for a longer time.

Identiferoai:union.ndltd.org:DUETT/oai:DUETT:duett-03052004-103856
Date05 March 2004
CreatorsWalter, Michael
ContributorsProf. Dr. Klaus-Gerhard Schmidt, Prof. Dr. Angelika Heinzel
PublisherGerhard-Mercator-Universitaet Duisburg
Source SetsDissertations and other Documents of the Gerhard-Mercator-University Duisburg
LanguageGerman
Detected LanguageEnglish
Typetext
Formatapplication/octet-stream, text/html, application/pdf
Sourcehttp://www.ub.uni-duisburg.de/ETD-db/theses/available/duett-03052004-103856/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. Hiermit erteile ich der Universitaet Duisburg das nicht-ausschliessliche Recht unter den unten angegebenen Bedingungen, meine Dissertation, Staatsexamens- oder Diplomarbeit, meinen Forschungs- oder Projektbericht zu veroeffentlichen und zu archivieren. Ich behalte das Urheberrecht und das Recht das Dokument zu veroeffentlichen und in anderen Arbeiten weiterzuverwenden.

Page generated in 0.0055 seconds