Soil is the most widely used material in the construction of various civil infrastructure. Various types of soils are extensively used in its natural or compacted form in the construction of dams, canals, road and railway subgrades, and waste containment structures such as soil covers and liners. These infrastructure and foundation soils are exposed to the influence of environmental factors. In the permafrost and seasonally frozen regions, soils can be in different states (e.g., saturated or unsaturated, frozen or thawed, or combinations of them) due to the variations in moisture content and temperature. The soil-water characteristic curve (SWCC), which is the relationship between soil water content and suction, is used in the interpretation and prediction of unsaturated soils behavior. Similarly, the soil-freezing characteristic curve (SFCC), which is the relationship between unfrozen water content and subzero temperature, is used in the prediction and interpretation of frozen soils behavior. In this thesis, the SWCC and SFCC of two Canadian soils (i.e. Toronto silty clay (TSC) and Toronto lean clay (TLC)) were extensively investigated for better understanding the fundamental relationship between SWCC and SFCC.
The soil resilient modulus (MR) is a key material property used in the rational design of pavements. Experimental investigations were undertaken to determine the MR of five Canadian soils (i.e., TSC, TLC, Kincardine lean clay (KLC), Ottawa Leda clay (OLC), and Indian Head till (IHT)), considering the influence of moisture and temperature, with the aid of an advanced triaxial testing equipment. Two simple models were proposed for estimating the MR of frozen soils, in this thesis. In addition, an artificial neural network (ANN) model was developed for estimating the MR of the five Canadian soils considering various influencing factors.
The conclusions from the various studies in this thesis are succinctly summarized below.
(1) Four expressions (i.e. power relationship, exponential relationship, van Genuchten equation, and Fredlund and Xing equation) that are widely used for representing the SFCC were selected for providing comparisons between the measured and fitted SFCCs for different soils. The results suggest that the exponential relationship and van Genuchten equation are suitable for sandy soils. The power relationship reasonably fits the SFCC for soils with different particle sizes, but not for saline silts. The Fredlund and Xing equation is flexible and provides good fits for all the soils.
(2) The SFCC and SWCC of TSC and TLC were experimentally determined, analyzed, and compared. Many factors influence the reliable measurement of SFCC, which include sensors’ resolution and stability, sensor calibration for each soil, and thermodynamic equilibrium condition. The hysteresis of SFCC for the two soils is mainly attributed to the supercooling of pore water. The quantitative dissimilarity in the measured SFCC and SWCC may be attributed to specimen structure variations during compaction and saturation, and during freezing / thawing processes, and cracks formation due to sensors insertion. In addition, some fundamental differences may exist between the drying / wetting and freezing / thawing processes, resulting in dissimilarity.
(3) Two novel models were proposed for the estimation of MR of frozen soils. The semi-empirical model extends the mechanics of unsaturated soils and employs SFCC for prediction. Several coarse- and fine-grained saturated soils were used to validate this model. The empirical hyperbolic model was proposed considering that the frozen MR versus subzero temperature relationship resembles hyperbola. This model was validated on coarse- and fine-grained soils under saturated / unsaturated conditions. The hyperbolic model has wider application since it can be used for both saturated and unsaturated frozen soils. Both the models are simple and promising.
(4) The MR of five Canadian soils subjected to wetting and freezing was determined by using the GDS ELDyn triaxial testing system. A freezing system was established for controlling the desired testing temperatures within the soil specimens. The results suggest: (i) The effect of subzero temperature on the MR is significant. (ii) For TLC, KLC, OLC, and IHT, the frozen MR versus subzero temperature relationship of the saturated specimen typically has steeper slope than specimen at the optimum water content, for the temperature range from 0 to -5 °C. (iii) The effect of stress levels on the frozen MR depends on soil type, water content, and subzero temperature. Lastly, (iv) Loading frequency does not show a significant influence on the frozen MR.
(5) The MR of the five Canadian soils was determined considering wetting and freeze-thaw (F-T) conditions. The results suggest: (i) The F-T cycles result in weak soil structure due to reduction in suction, particles movement, loss of cohesion, and formation of cracks / channels. (ii) The critical numbers of F-T cycles were determined as 1, 1, 2, and 1 for TLC, KLC, OLC, and IHT at the optimum water content, respectively. (iii) The percentage of reduction in MR after the critical number of F-T cycles was strongly related to the plasticity index for specimens tested at the optimum water content. (iv) The wetting process results in the decrease in suction and enlargement of soil pores. Consequently, relatively low MR values were measured at high water contents, and the effect of F-T cycles becomes insignificant. Finally, (v) The effect of stress levels on the MR was dependent on the initial water content of the specimen and soil type.
Identifer | oai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/39555 |
Date | 28 August 2019 |
Creators | Ren, Junping |
Contributors | Vanapalli, Sai |
Publisher | Université d'Ottawa / University of Ottawa |
Source Sets | Université d’Ottawa |
Language | English |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Page generated in 0.0031 seconds