Pressure gain combustion is a form of combustion that uses pressure waves to transfer energy and generate a rise in total pressure during the combustion process. Pressure gain combustion shows potential to increase the cycle efficiency of conventional gas turbine engines if used in place of the steady combustor. However, one of the challenges of integrating pressure gain combustion into a gas turbine engine is that a turbine driven by pulsing flow experiences a decrease in efficiency. The interaction of pressure pulses with a turbine was investigated to gain physical insights and to provide guidelines for designing turbines to be driven by pulsing flow. An experimental rig was built to compare steady flow with pulsing flow. Compressed air was used in place of combustion gases; pressure pulses were created by rotating a ball valve with a motor. The data showed that a turbine driven by full annular pressure pulses has a decrease in turbine efficiency and pressure ratio. The average decrease in turbine efficiency was 0.12 for 10 Hz, 0.08 for 20 Hz, and 0.04 for 40 Hz. The turbine pressure ratio, defined as the turbine exit total pressure divided by the turbine inlet total pressure, ranged from 0.55 to 0.76. The average decrease in turbine pressure ratio was 0.082 for 10 Hz, 0.053 for 20 Hz, and 0.064 for 40 Hz. The turbine temperature ratio and specific turbine work were constant. Pressure pulse amplitude, not frequency, was shown to be the main cause for the decrease in turbine efficiency. Computational fluid dynamics simulations were created and were validated with the experimental results. Simulations run at the same conditions as the experiments showed a decrease in turbine efficiency of 0.24 for 10 Hz, 0.12 for 20 Hz, and 0.05 for 40 Hz. In agreement with the experimental results, the simulations also showed that pressure pulse amplitude is the driving factor for decreased turbine efficiency and not the pulsing frequency. For a pulsing amplitude of 86.5 kPa, the efficiency difference between a 10 Hz and a 40 Hz simulation was only 0.005. A quadratic correlation between turbine efficiency and corrected pulse amplitude was presented with an R-squared value of 0.99. Incidence variation was shown to cause the change in turbine efficiency and a correlation between corrected incidence and corrected amplitude was established. The turbine geometry was then optimized for pulsing flow conditions. Based on the optimization results and observations, design recommendations were made for designing turbines for pulsing flow. The first design recommendation was to weight the design of the turbine toward the peak of the pressure pulse. The second design recommendation was to consider the range of inlet angles and reduce the camber near the leading edge of the blade. The third design recommendation was to reduce the blade turning to reduce the wake caused by pulsing flow. A new turbine design was created and tested following these design recommendations. The time-accurate validation simulation for a 10 Hz pressure pulse showed that the new turbine decreased the entropy generation by 35% and increased the efficiency by 0.04 (5.4%).
Identifer | oai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-7548 |
Date | 01 April 2017 |
Creators | Fernelius, Mark H. |
Publisher | BYU ScholarsArchive |
Source Sets | Brigham Young University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | All Theses and Dissertations |
Rights | http://lib.byu.edu/about/copyright/ |
Page generated in 0.0021 seconds