Return to search

Unsupervised neural and Bayesian models for zero-resource speech processing

Zero-resource speech processing is a growing research area which aims to develop methods that can discover linguistic structure and representations directly from unlabelled speech audio. Such unsupervised methods would allow speech technology to be developed in settings where transcriptions, pronunciation dictionaries, and text for language modelling are not available. Similar methods are required for cognitive models of language acquisition in human infants, and for developing robotic applications that are able to automatically learn language in a novel linguistic environment. There are two central problems in zero-resource speech processing: (i) finding frame-level feature representations which make it easier to discriminate between linguistic units (phones or words), and (ii) segmenting and clustering unlabelled speech into meaningful units. The claim of this thesis is that both top-down modelling (using knowledge of higher-level units to to learn, discover and gain insight into their lower-level constituents) as well as bottom-up modelling (piecing together lower-level features to give rise to more complex higher-level structures) are advantageous in tackling these two problems. The thesis is divided into three parts. The first part introduces a new autoencoder-like deep neural network for unsupervised frame-level representation learning. This correspondence autoencoder (cAE) uses weak top-down supervision from an unsupervised term discovery system that identifies noisy word-like terms in unlabelled speech data. In an intrinsic evaluation of frame-level representations, the cAE outperforms several state-of-the-art bottom-up and top-down approaches, achieving a relative improvement of more than 60% over the previous best system. This shows that the cAE is particularly effective in using top-down knowledge of longer-spanning patterns in the data; at the same time, we find that the cAE is only able to learn useful representations when it is initialized using bottom-up pretraining on a large set of unlabelled speech. The second part of the thesis presents a novel unsupervised segmental Bayesian model that segments unlabelled speech data and clusters the segments into hypothesized word groupings. The result is a complete unsupervised tokenization of the input speech in terms of discovered word types|the system essentially performs unsupervised speech recognition. In this approach, a potential word segment (of arbitrary length) is embedded in a fixed-dimensional vector space. The model, implemented as a Gibbs sampler, then builds a whole-word acoustic model in this embedding space while jointly performing segmentation. We first evaluate the approach in a small-vocabulary multi-speaker connected digit recognition task, where we report unsupervised word error rates (WER) by mapping the unsupervised decoded output to ground truth transcriptions. The model achieves around 20% WER, outperforming a previous HMM-based system by about 10% absolute. To achieve this performance, the acoustic word embedding function (which maps variable-duration segments to single vectors) is refined in a top-down manner by using terms discovered by the model in an outer loop of segmentation. The third and final part of the study extends the small-vocabulary system in order to handle larger vocabularies in conversational speech data. To our knowledge, this is the first full-coverage segmentation and clustering system that is applied to large-vocabulary multi-speaker data. To improve efficiency, the system incorporates a bottom-up syllable boundary detection method to eliminate unlikely word boundaries. We compare the system on English and Xitsonga datasets to several state-of-the-art baselines. We show that by imposing a consistent top-down segmentation while also using bottom-up knowledge from detected syllable boundaries, both single-speaker and multi-speaker versions of our system outperform a purely bottom-up single-speaker syllable-based approach. We also show that the discovered clusters can be made less speaker- and gender-specific by using features from the cAE (which incorporates both top-down and bottom-up learning). The system's discovered clusters are still less pure than those of two multi-speaker unsupervised term discovery systems, but provide far greater coverage. In summary, the different models and systems presented in this thesis show that both top-down and bottom-up modelling can improve representation learning, segmentation and clustering of unlabelled speech data.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:726595
Date January 2017
CreatorsKamper, Herman
ContributorsGoldwater, Sharon ; King, Simon
PublisherUniversity of Edinburgh
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://hdl.handle.net/1842/25432

Page generated in 0.0017 seconds