Return to search

A precise underwater acoustic positioning method based on phase measurement

Positioning an underwater object with respect to a reference point is required in diverse areas in ocean scientific and engineering undertakings, such as marine habitat monitoring, study of sedimentation processes, underwater searching and mapping, data collection, instrument placement and retrieval, and so on.
Underwater acoustic positioning systems, including long baseline (LBL) systems, short baseline (SBL) systems, and ultra-short baseline (USBL) systems, are designed to operate from a reference point and employ external transducers or transducer arrays as aids for positioning. Traditional positioning methods rely on measuring of time-of-flight of an acoustic signal travelling from the target to the reference platform by means of the cross-correlation method. The positioning accuracy of LBL systems varies from a few centimeters to a few meters, depending on the operating range and working frequency. LBL systems provide a uniform positioning accuracy for a given transponder array setup, but they suffer the time-consuming instrument deployment on the seafloor, as well as the complicated operating procedures. SBL and USBL systems have relatively simple configurations. But their positioning accuracy is a function of water depth and operating range. To obtain absolute position accuracy, additional sensors such as the ship's gyro or a surface navigation system are needed.
In this thesis, a novel positioning method is proposed which takes advantages of a tether cable between the reference platform and the target. This method conducts positioning via continuous phase measurement between a reference signal and the acoustic signal transmitted by the target to the reference platform. It is named the Positioning-based-on-PHase-Measurement method or PPHM method in short. Every 2π change in the phase difference between these two signals corresponds to a one-wavelength range increment along the radial direction from the target’s initial position to its new position. If a receiver array is used, with at least two hydrophones, the target’s bearing information can be also calculated by measuring the phases of the output signals from each of the array hydrophones. Under ideal conditions, the positioning error of the PPHM method is proportional to the phase measurement error.
The PPHM method is very sensitive to changes in the underwater medium, such as sound speed variations, ocean currents and multipath interferences. Environmental fluctuations will degrade the positioning performance. These problems will be investigated and solutions will be proposed to minimize their effects.
The PPHM method can be used to position an underwater moving object such as a remotely operated vehicle (ROV) or a bottom crawler. Also, it can be used to monitor the ocean currents speed variations over a path, or to monitor the movements of tectonic plates. The last two applications will be addressed in detail in this thesis, whereas the first one is very challenging and needs more work.

Identiferoai:union.ndltd.org:uvic.ca/oai:dspace.library.uvic.ca:1828/2998
Date30 August 2010
CreatorsZhou, Li
ContributorsZielinski, Adam, Kraeutner, Paul H.
Source SetsUniversity of Victoria
LanguageEnglish, English
Detected LanguageEnglish
TypeThesis
RightsAvailable to the World Wide Web

Page generated in 0.0018 seconds