Return to search

Effect on processing conditions on grain boundary character distribution and mobility in nuclear fuels

abstract: The initial microstructure of oxide fuel pellets can play a key role in their performance. At low burnups, the transport of fission products has a strong dependence on oxygen content, grain size distribution, porosity and grain boundary (GB) characteristics (crystallography, geometry and topology), all of which, in turn depend on processing conditions. These microstructural features can also affect the fuel densification, thermal conductivity and microstructure evolution inside the reactor. Understanding these effects can provide insight into microstructure evolution of fuels in-pile. In this work, mechanical and ion beam serial sectioning techniques were developed to obtain Electron Backscatter Diffraction (EBSD) data, both in 2-D and 3-D, for depleted UO2+X pellets manufactured under different conditions. The EBSD maps were used to relate processing conditions to microstructural features, with emphasis on special GBs according to the Coincident Site Lattice (CSL) model, as well as correlations between pore size and location in the microstructure. Furthermore, larger grains (at least 2.5 times the average grain size) were observed in all the samples and studied. Results indicate that larger grains, in samples manufactured under different conditions, dominate the overall crystallographic texture and have a fairly strong GB texture. Moreover, it seems that the preferential misorientation axis for these GBs, regardless of the O/M, is {001}. These results might be related to GB energy and structure and, suggest that the mechanism that controls grain growth seems to be independent of both processing conditions and stoichiometry. Additionally, a sample was heat treated to relate grain growth and crystallography. The results indicate that at least two mechanisms were involved. Lengthening of GBs was observed for larger grains. Another mechanism of grain growth was observed, in this case, grains rotate to match a neighboring grain forming a larger grain. In the new grain, the misorientation between the two neighboring grains decreases to less than 5 degrees, forming a new larger grain. The results presented in this work indicate that detailed studies of the initial microstructure of the fuel, with emphasis on the crystallography of grains and GBs could help to give insights on the in-pile microstructural evolution of the fuel. / Dissertation/Thesis / Ph.D. Materials Science and Engineering 2014

Identiferoai:union.ndltd.org:asu.edu/item:25018
Date January 2014
ContributorsRudman Prieto, Karin (Author), Peralta, Pedro (Advisor), Ponce, Fernando (Committee member), Sieradski, Karl (Committee member), Arizona State University (Publisher)
Source SetsArizona State University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral Dissertation
Format269 pages
Rightshttp://rightsstatements.org/vocab/InC/1.0/, All Rights Reserved

Page generated in 0.0014 seconds