Return to search

Spektroskopische Untersuchungen zur Komplexierung und zum Einbau von Actiniden: Uran(VI) Komplexierung mit gelösten Silikaten und Stabilität von Europium(III) Xenotim Solid Solutions

Die weltweite Nutzung der Kernenergie hat sich in den letzten Jahrzehnten zu einem festen Bestandteil der Primärenergieerzeugung gewandelt. Neben dem Vorteil der CO2-armen Energieerzeugung besitzt die Kernenergie jedoch den großen Nachteil der Entsorgung des anfallenden hochradioaktiven Abfalls. Angestrebt wird eine tiefengeologische Endlagerung der wärmeentwickelnden hochradioaktiven Abfälle mit einem sicheren Einschluss über einen Zeitraum von 1 Million Jahre. Für die Sicherheitsanalyse eines solchen Endlagers ist ein grundlegendes Verständnis der geochemischen Prozesse im Nah- und Fernfeld, z.B. zu den Wechselwirkungen der Abfälle mit den einzelnen Barrieren und deren Charakteristika, notwendig. In Abhängigkeit des eingelagerten Abfalls und des gewählten Wirtsgesteines kann es im Nahfeld zu einem Temperaturanstieg auf bis zu 200 °C kommen, mit einem entsprechenden Einfluss auf die geochemischen Prozesse. Für eine sichere Endlagerung des wärmeentwickelnden hochradioaktiven Abfalls ist daher die Charakterisierung der stattfindenden Prozesse, wie Komplexierung sowie Sorption und Einbaureaktionen, als auch die Bestimmung derer thermodynamischen Größen, inklusive ihrer Temperaturabhängigkeit, essenziell. Die Arbeit kann im Folgenden in drei Themengebiete eingeteilt werden.
Das erste Themengebiet dieser Arbeit beschäftigt sich mit der Temperaturabhängigkeit der Uran(VI)-Lumineszenz. Die Lumineszenz-Spektroskopie kann dabei für die Bestimmung von thermodynamischen Daten herangezogen werden. Für die Auswertung der Lumineszenz-Spektren ist es wichtig zu wissen, ob es zu Veränderungen der Emissionsspektren bei der Variation der Temperatur kommt. In dieser Arbeit durchgeführte UV-Vis Untersuchungen zeigen eine Verschiebung der Absorptionsbanden im Temperaturbereich zwischen 3 - 70 °C. Anhand der Spektren lässt sich eine bathochrome Verschiebung feststellen, welche auch auf die Lumineszenz-Spektren übertragen werden kann. Um Folgefehler bei der Bestimmung weiterer Größen zu vermeiden, ist es wichtig solche Verschiebungen zu berücksichtigen.
Das zweite Themengebiet dieser Arbeit beschäftigt sich mit der temperaturabhängigen Uran(VI)-Hydrolyse sowie der Komplexierung von Uran(VI) mit wässrigen Silikaten. Uran(VI) zeigt eine sehr ausgeprägte Hydrolyse, unter Bildung verschiedener mono- und polynuklearer Hydroxo-Komplexe. Die Hydrolyse ist eine grundlegende Reaktion und muss bei Untersuchungen von Komplexreaktionen als kompetitive Reaktion stets berücksichtigt werden. Mittels Lumineszenz-Spektroskopie konnte die Bildung des 1:1 Hydroxo-Komplexes (UO2OH+) ab etwa pH 3 bestätigt werden. Neben diesem Komplex konnte die Bildung des polynuklearen 3:5 ((UO2)3(OH)5+) Hydroxo-Komplexes nachgewiesen werden. Um den Einfluss der lumineszenz-starken polynuklearen Hydroxo-Spezies in der folgenden Uran(VI)-Silikat-Komplexierung zu reduzieren, erfolgte die Untersuchungen unterhalb von pH 4,3 bzw. die Uran(VI)-Konzentration lag unterhalb der Grenze zur Bildung dieser Spezies.
Silizium gilt als ein ubiquitäres Element und ist nach Sauerstoff das zweithäufigste Element in der Erdkruste. Die Silikate besitzen ebenfalls eine vielgestaltige wässrige Chemie unter Bildung von mononuklearen bis kolloidalen Spezies. Gleichzeitig ist Silizium ein Hauptbestandteil in den möglichen Wirtsgesteinen Ton und Kristallin in einem tiefengeologischen Endlager. In vielen Fällen ist zudem aus konstruktionsbedingten Gründen die Verwendung von Zement notwendig. Die im Zement enthaltenen Porenwässer besitzen dabei oft sehr hohe pH-Werte im Bereich 11 - 13. An der Grenzfläche zwischen Zement und Wirtsgestein können diese Porenwässer zur Auflösung des Wirtsgesteins und damit verbunden zur Erhöhung der Silikat- sowie Aluminatkonzentration führen. Daher sollte Silizium als möglicher Komplexpartner mit in die Langzeitsicherheitsanalyse aufgenommen werden. Aus der Literatur ist bisher nur ein An(VI)-Si-Komplex im aziden pH-Bereich, basierend auf folgender Reaktion: AnO22+ + H4SiO4 '⇌ ' AnO2OSi(OH)3+ + H+, bekannt (An = U, Np, Pu). In diesen Arbeiten wurde die Löslichkeitsgrenze für wässrige Silikate oft überschritten und eine Komplexbildung mit oligomeren Spezies kann daher nicht ausgeschlossen werden. Ziel der U(VI)-Komplexbildungsstudien war es daher, die Rolle der U(VI)-Hydrolyse und Silikatpolymerisation in Gegenwart wässriger Silikate im sauren pH-Bereich aufzuklären und den Einfluss der Temperatur auf die U(VI)-Silikat-Komplexierung zu untersuchen. Darüber hinaus wurden die Komplexbildungsstudien auf den alkalischen pH-Bereich ausgedehnt, in dem bisher keine U(VI)-Silikat-Spezies bekannt sind. Neben der Lumineszenz-Spektroskopie diente die Elektrosprayionisation-Massenspektrometrie (ESI-MS), die Schubert-Methode sowie die Dichte-Funktional-Theorie (DFT) der Bestimmung thermodynamischer Größen dieses Systems.
Zur Abschätzung der experimentellen Bedingungen erfolgten ESI-MS Untersuchungen bei verschiedenen pH-Werten sowie Si-Konzentrationen. Die Ergebnisse zeigen, dass es bei pH 3,5 sowie 5,0 zur Bildung oligomerer U-Si sowie Si-Spezies, bei bereits geringer Überschreitung der Löslichkeitsgrenze, kommt. Die experimentellen Bedingungen wurden daher auf pH 3,5 bei einer maximalen Si-Konzentration von 1∙10‒3 M festgelegt.
In der Lumineszenz-Spektroskopie zeigt sich eine Zunahme der Molfraktion für den Uran(VI)-Silikat Komplex mit steigender Temperatur. Mit Hilfe der Spektrenentfaltung konnte ein Einzelkomponentenspektrum für den Komplex UO2OSi(OH)3+ bestimmt werden. Die dazugehörige Stabilitätskonstante beträgt log K0 = ‒(0,06 ± 0,24). Die temperaturabhängige Untersuchung ermöglicht die Bestimmung der molaren Standardreaktionsenthalpie ΔrHm0 sowie -entropie ΔrSm0. Für beide Größen ergibt sich ein positiver Wert. Dies weist daraufhin, dass die Entropie als Triebkraft für die Komplexbildung mit steigender Temperatur verantwortlich ist.
Zur Untersuchung der Komplexbildungsreaktion im alkalischen pH-Bereich wurde die Schubert-Methode verwendet. Die Methode beruht dabei auf der Bestimmung von Verteilungskoeffizienten in An- und Abwesenheit eines Komplexbildners sowie einer Festphase. Durch die kompetitive Methode ist es möglich, weitere gleichzeitig stattfindende Komplexreaktionen in einem Nebenreaktionskoeffizienten zu vereinen. Die Ergebnisse sind die Anzahl an der Reaktion beteiligten Liganden sowie die Anzahl an ausgetauschten H+-Ionen. Auf Basis dieser beiden Informationen lässt sich auf die Bildung eines ternären Uran(VI)-Silikat-Komplexes im pH-Bereich zwischen 8 - 11 mit einer mono- oder bidentaten Anbindung der Silikat-Gruppe an das Uran(VI) Zentralion schließen. Es konnten zwei mögliche ternäre Komplexe UO2(OH)2OSi(OH)3‒ bzw. UO2(OH)O2Si(OH)2‒ mit einer Stabilitätskonstante logK0 = −(17,2 ± 1,1) identifiziert werden. DFT-Rechnungen zeigen dabei, dass der Komplex UO2(OH)2OSi(OH)3‒ die höhere relative Stabilität besitzt. Der in dieser Arbeit bestimmte An(VI)-Silikat-Komplex ist der erste, welcher unter alkalinen pH-Bedingungen identifiziert werden konnte. Speziationsrechnungen, basierend auf einem natürlichen Tongestein-Porenwasser, zeigen, dass der identifizierte Komplex neben dem dominanten Uran(VI)-Carbonat- und Uran(VI)-Hydroxid-Komplexen vorliegen kann. Dies sind wichtige Hinweise in Hinblick auf die Langzeitsicherheitsanalyse eines tiefengeologischen Endlagers.
Eine weitere Quelle für wässrige Silikate stellen Glaskokillen aus der Wiederaufbereitung abgebrannter Brennelemente dar. Hier kann es zur Auflösungen dieser Kokillen, unter Freisetzung wässriger Silikate und der darin enthaltenen hochradioaktiven trivalenten minoren Actinide Np3+, Am3 sowie Cm3+, kommen. Das dritte Themengebiet beschäftigt sich daher mit einer alternativen Host-Matrix zu den Glaskokillen in Form von LnPO4-Keramiken in der Xenotim-Struktur. Als nicht radioaktives chemisches Analogon zu den dreiwertigen Actiniden wird oft Eu3+ eingesetzt, welches sehr gute lumineszenz-spektroskopische Eigenschaften besitzt. Die Dotierung der LnPO4-Kermiken mit Eu3+ ermöglicht die Verwendung der site-selektiven Lumineszenz-Spektroskopie, neben der Röntgendiffraktometrie und der Raman-Spektroskopie. Die Untersuchung erfolgte jeweils nach der Synthese, sowie nach einem Jahr Lagerung. Die erhaltenen Ergebnisse zeigen, neben der Bildung der gewünschten Xenotim-Struktur, die Bildung von LnPO4-Keramiken in einer unüblichen Anhydrit-Struktur sowie von mehrphasigen Keramiken. Nach einem Jahr Lagerung wurde eine signifikante Veränderung innerhalb der Lumineszenz-Spektren festgestellt, was auf einen Ausschluss von Eu3+ aus der gebildeten Xenotim-Struktur schließen lässt. Anhand dieser Ergebnisse, ist von der Verwendung von LnPO4-Keramiken in der Xenotim-Struktur für die Endlagerung minorer Actinide abzuraten.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:74201
Date19 March 2021
CreatorsLösch, Henry
ContributorsStumpf, Thorsten, Churakov, Sergey, Huittinen, Nina, Technische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageGerman
Detected LanguageGerman
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0029 seconds