Human interference with the Earth’s climate, through the release of greenhouse gasses (GHGs), is estimated to have already increased average statewide temperatures in California by 1.7° Fahrenheit (F), with a further 2.7°F of warming expected by mid-century. The negative impacts of increased temperatures may be especially acute in mid-latitude cities that currently enjoy a mild climate, such as Los Angeles (LA), which are projected to warm to a point that will significantly affect human health and well being. The built environment increases urban temperatures through building materials that readily absorb heat from the sun, a lack of vegetation, a lack of pervious surface area, and anthropogenic heat. Local governments can take action to help their cities adapt to future temperatures through changes to building materials, urban design and infrastructure. This study evaluates six urban design strategies for reducing temperatures and therefore adapting to increased heat in LA: cool roofs, cool pavements, solar panels, tree planting, structural shading and green roofs. The methods used in this analysis include a cost-effectiveness analysis, key stakeholder interviews, and case studies from other cities in the US. Findings indicate that cool roofs are the most cost-effective strategy for urban heat island mitigation, with cool pavements and tree planting also cost-effective. Findings from stakeholder interviews indicate that political feasibility is high for all strategies except structural shading, which was thought to be costly and difficult to implement. However, significant political barriers were also identified for tree planting and green roofs. Findings from four case studies indicate that climate adaptation policies should emphasize co-benefits, include flexible design standards, and provide financial or performance-based incentives for property owners or developers. Specific recommendations for implementing climate adaptation measures are provided for urban planners, policy makers, urban designers and architects in Los Angeles.
Identifer | oai:union.ndltd.org:CALPOLY/oai:digitalcommons.calpoly.edu:theses-2490 |
Date | 01 April 2015 |
Creators | Olsen, Kerby Andrew |
Publisher | DigitalCommons@CalPoly |
Source Sets | California Polytechnic State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Master's Theses |
Page generated in 0.0128 seconds