This thesis aims to examine the spatial relationship between elevated air temperatures and populations most vulnerable to heat across the urban environment. To assess this correlation, the analysis focuses on the cities of Atlanta, Georgia and Minneapolis, Minnesota. A three-part methodology was employed: first, continuous air temperature was estimated using satellite imagery and weather station observations; second, a heat vulnerability index was generated based on demographic, social, and environmental variables at the Census block group level; and third, a spatial statistical analysis was performed to measure the correlation between the hottest temperatures and the populations most vulnerable to heat. Finally, the thesis concludes with policy recommendations that address the comprehensive nature of vulnerability in relation to extreme heat. As municipalities and local governments plan for a future with warmer temperatures and larger urban populations, effective policies must be designed with respect to both the social and physical environments; the results herein can help inform such strategies.
Identifer | oai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/53028 |
Date | 12 January 2015 |
Creators | Morano, Kaitlin |
Contributors | French, Steven |
Publisher | Georgia Institute of Technology |
Source Sets | Georgia Tech Electronic Thesis and Dissertation Archive |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Page generated in 0.0025 seconds