Return to search

Urbanised territories as a specific component of the global carbon cycle / Urbanised territories as a specific component of the global carbon cycle

Wir betrachten folgende Teile: die zusätzlichen Kohlenstoff(C)-emissionen, welche aus der Umwandlung von natürlichem Umland durch Stadtwachstum resultieren, und die Änderung des C-Flusses durch 'urbanisierte' Ökosysteme, soweit atmosphärisches C durch diese in umliegende natürliche Ökosysteme entlang der Kette “Atmosphäre -> Vegetation -> abgestorbene organische Substanzen” gepumpt wird: d.h. C-Export; für den Zeitraum von 1980 bis 2050.

Als Szenario nutzen wir Prognosen der regionalen Stadtbevölkerung, welche durch ein 'Hybridmodell' generiert werden für acht Regionen. Alle Schätzungen der C-Flüsse basieren auf zwei Modellen: das Regression Modell und das sogenannte G-Modell. Die Siedlungsfläche, welche mit dem Wachstum der Stadtbevölkerung zunimmt, wird in 'Grünflächen' (Parks, usw.), Gebäudeflächen und informell städtisch genutzte Flächen (Slums, illegale Lagerplätze, usw.) unterteilt.

Es werden jährlich die regionale und globale Dynamik der C-Emissionen und des C-Exports sowie die C-Gesamtbilanz berechnet. Dabei liefern beide Modelle qualitativ ähnliche Ergebnisse, jedoch gibt es einige quantitative Unterschiede. Im ersten Modell erreicht die globale Jahresemission für die Dekade 2020-2030 resultierend aus der Landnutzungsänderung ein Maximum von 205 Mt/a. Die maximalen Beiträge zur globalen Emission werden durch China, die asiatische und die pazifische Region erbracht. Im zweiten Modell erhöht sich die jährliche globale Emission von 1.12 GtC/a für 1980 auf 1.25 GtC/a für 2005 (1Gt = 109 t). Danach beginnt eine Reduzierung. Vergleichen wir das Emissionmaximum mit der Emission durch Abholzung im Jahre 1980 (1.36 GtC/a), können wir konstatieren, daß die Urbanisierung damit in vergleichbarer Grösse zur Emission beiträgt.

Bezogen auf die globale Dynamik des jährlichen C-Exports durch Urbanisierung beobachten wir ein monotones Wachstum bis zum nahezu dreifachen Wert von 24 MtC/a für 1980 auf 66 MtC/a für 2050 im ersten Modell, bzw. im zweiten Modell von 249 MtC/a für 1980 auf 505 MtC/a für 2050. Damit ist im zweiten Fall die Transportleistung der Siedlungsgebiete mit dem C-Transport durch Flüsse in die Ozeane (196 .. 537 MtC/a) vergleichbar.

Bei der Abschätzung der Gesamtbilanz finden wir, daß die Urbanisierung die Bilanz in Richtung zu einer 'Senke' verschiebt.

Entsprechend dem zweiten Modell beginnt sich die C-Gesamtbilanz (nach annähernder Konstanz) ab dem Jahre 2000 mit einer fast konstanten Rate zu verringern. Wenn das Maximum im Jahre 2000 bei 905MtC/a liegt, fällt dieser Wert anschliessend bis zum Jahre 2050 auf 118 MtC/a. Bei Extrapolation dieser Dynamik in die Zukunft können wir annehmen, daß am Ende des 21. Jahrhunderts die “urbane” C-Gesamtbilanz Null bzw. negative Werte erreicht. / We calculate the additional carbon emissions as a result of the conversion of natural land in a process of urbanisation; and the change of carbon flows by “urbanised” ecosystems, when the atmospheric carbon is exported to the neighboring territories, from 1980 till 2050 for the eight regions of the world.

As a scenario we use combined UN and demographic model′s prognoses for regional total and urban population growth. The calculations of urban areas dynamics are based on two models: the regression model and the Gamma-model. The urbanised area is sub-divided on built-up, „green“ (parks, etc.) and informal settlements (favelas) areas.

The next step is to calculate the regional and world dynamics of carbon emission and export, and the annual total carbon balance. Both models give similar results with some quantitative differences. In the first model, the world annual emissions attain a maximum of 205 MtC/year between 2020-2030. Emissions will then slowly decrease. The maximum contributions are given by China and the Asia and Pacific regions. In the second model, world annual emissions increase to 1.25 GtC in 2005, beginning to decrease afterwards. If we compare the emission maximum with the annual emission caused by deforestation, 1.36GtC per year, then we can say that the role of urbanised territories (UT) is of a comparable magnitude.

Regarding the world annual export of carbon by UT, we observe its monotonous growth by three times, from 24 MtC to 66 MtC in the first model, and from 249 MtC to 505 MtC in the second one. The latter, is therefore comparable to the amount of carbon transported by rivers into the ocean (196-537 MtC).

By estimating the total balance we find that urbanisation shifts the total balance towards a “sink” state.

The urbanisation is inhibited in the interval 2020-2030, and by 2050 the growth of urbanised areas would almost stop. Hence, the total emission of natural carbon at that stage will stabilise at the level of the 1980s (80 MtC per year).

As estimated by the second model, the total balance, being almost constant until 2000, then starts to decrease at an almost constant rate. We can say that by the end of the XXI century, the total carbon balance will be equal to zero, when the exchange flows are fully balanced, and may even be negative, when the system begins to take up carbon from the atmosphere, i.e., becomes a “sink”.

Identiferoai:union.ndltd.org:Potsdam/oai:kobv.de-opus-ubp:160
Date January 2004
CreatorsSvirejeva-Hopkins, Anastasia
PublisherUniversität Potsdam, Mathematisch-Naturwissenschaftliche Fakultät. Institut für Physik und Astronomie
Source SetsPotsdam University
LanguageEnglish
Detected LanguageEnglish
TypeText.Thesis.Doctoral
Formatapplication/pdf
Rightshttp://opus.kobv.de/ubp/doku/urheberrecht.php

Page generated in 0.0152 seconds