In an interdisciplinary study requiring the synergistic association of historical evidence and chemical and biochemical analyses, this thesis investigates the properties and characteristics of historically modified soils known as anthrosols. These soils, developed through the anthropogenic addition of high volumes of organic-rich municipal waste materials to land, including human and animal waste, as part of the waste management practices in medieval urban communities in Scotland at St Andrews, Roxburgh and Elgin, offer an insight to the state and dynamics of these organic material. Soil is one of the most sensitive environmental domains to transformation. These transformations are visible from the alterations to the physical and chemical properties of soil. Anthropogenic activities may leave behind signatures in the soil in the form of artefacts, ecofacts, elemental enrichment or depletion, enhancement in soil magnetic properties and organic matter content. In the historical dimension of this study, the observable features and measurable properties of soil profiles are exploited to reveal past organisation and functions of cultural landscapes by carefully studying the stratigraphic units of soil profile, and examining the association of each unit with settlement artefacts and soil properties. Through comparison with historical records of past events on the respective study sites, the relationship between the soils record of past human activities is observed through physical, chemical and biochemical properties. The historical record is used to assess if such evidence can be used reliably to develop the account of site use for the medieval burghs of Scotland. In the environmental aspect, investigation focuses on the physical and chemical conditions of these soils in terms of their carbon content, composition, residence time estimates and their role in global C cycle and terrestrial carbon budgeting. Past investigations of anthopogenically-deepened soils have been interpreted with respect to historical site use, however, the environmental implications of the resultant accumulated organic material or residue have not previously been considered in much detail. A particular novelty of this aspect of the project is that it is an in-depth examination of anthropogenic soils with known histories extending into the medieval period. This time-depth allows a new understanding of the processes and products of decomposition of known organic materials that were added to soil. The biophysicochemical data obtained from these soils such as their extant organic carbon content and variability with depth, the composition of the various carbon species that together constitute soil organic matter, and biological community and activity (microorganisms and enzymes) provides critical information on the relative recalcitrance, state of decomposition, and the mechanism of stabilisation of these materials in the soil.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:675228 |
Date | January 2015 |
Creators | Esiana, Benneth O. I. |
Contributors | Adderley, W. Paul; Oram, Richard D. |
Publisher | University of Stirling |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://hdl.handle.net/1893/22463 |
Page generated in 0.0022 seconds