Return to search

Force-directed instruction scheduling for low power [electronic resource] / by Prashant Jayawant Dongale.

Title from PDF of title page. / Document formatted into pages; contains 56 pages. / Thesis (M.S.C.S.)--University of South Florida, 2003. / Includes bibliographical references. / Text (Electronic thesis) in PDF format. / ABSTRACT: The increasing need for low-power computing devices has led to the efforts to optimize power in all the components of a system. It is possible to achieve significant power optimization at the software level through instruction reordering during the compilation phase. In this thesis, we have designed and implemented a novel instruction scheduling technique, called FD-ISLP, aimed at reducing the software power consumption. In the proposed approach for instruction scheduling, we modify the force-directed scheduling technique used in high-level synthesis of VLSI circuits to derive a latency-constrained algorithm that reorders the instructions in a basic block of assembly code in application software to reduce power consumption due to its execution. The scheduling algorithm takes the data dependency graph (DDG) for a given basic block and a power dissipation table (PDT), which is generated by characterizing the instruction set architecture. / ABSTRACT: We model power, commonly referred to as software power in literature, as a force to be minimized by relating the inter-instruction power cost as the spring constant,k,and the change in instruction probability as the displacement,x, in the force equation f = k * x. The salient feature of our algorithm is that it accounts for the global effect of any tentative scheduling decision, which avoids a solution being trapped in a local minima. The power estimates are obtained through using a tool set, called Simple-Power. Experimental results indicate that our technique accounts for an average of 12.68 % savings in power consumption over the original source code for the selected benchmark programs. / System requirements: World Wide Web browser and PDF reader. / Mode of access: World Wide Web.

Identiferoai:union.ndltd.org:USF/oai:palmm.fcla.edu:AJN3914SEB
Date January 2003
CreatorsDongale, Prashant.
PublisherUniversity of South Florida
Source SetsUniversity of South Flordia
Detected LanguageEnglish

Page generated in 0.0016 seconds