Return to search

Utility Accrual Real-Time Scheduling Under Variable Cost Functions

We present a utility accrual real-time scheduling algorithm called CIC-VCUA, for tasks whose execution times are functions of their starting times. We model such variable execution times employing variable cost functions (or VCFs). The algorithm considers application activities that are subject to time/utility function time constraints (or TUFs), execution times described using VCFs, and concurrent, mutually exclusive sharing of non-CPU resources. We consider the multi-criteria scheduling objective of (1) assuring that the maximum interval between any two consecutive, successful completions of jobs of a task must not exceed a specified upper bound, and (2) maximizing the system's total accrued utility, while satisfying mutual exclusion resource constraints. Since the scheduling problem is intractable, CIC-VCUA statically computes worst-case sojourn times of tasks, selects tasks for execution based on their potential utility density, and completes them at specific times, in polynomial-time. We establish that CIC-VCUA achieves optimal timeliness during under-loads. Further, we identify the conditions under which timeliness assurances hold. Our simulation experiments illustrate CIC-VCUA's effectiveness and superiority. / Master of Science

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/34358
Date15 August 2005
CreatorsBalli, Umut
ContributorsElectrical and Computer Engineering, Ravindran, Binoy, Hou, Yiwei Thomas, Mishra, Amitabh
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/
RelationUmut_Balli_Thesis.pdf

Page generated in 0.0022 seconds