Les travaux réalisés au cours de cette thèse s'inscrivent dans les problématiques de localisation d'un véhicule par vision. Nous nous plaçons en particulier dans le cas de parcours sur de longues distances, c'est à dire plusieurs kilomètres. Les méthodes actuelles de localisation et cartographie simultanées souffrent de problèmes de dérives qui les rendent difficilement exploitables après plusieurs centaines de mètres. Nous proposons dans ce mémoire de pallier ces limites en exploitant une connaissance à priori sur la géométrie de l'environnement parcouru.Cette information est extraite d'un Système d'Information Géographique. En particulier, les travaux réalisés se basent sur les modèles 3D des bâtiments des villes et sur une carte de la route.Dans la première partie de ce mémoire, nous proposons une approche permettant de corriger hors ligne une reconstruction SLAM en exploitant la connaissance d'un modèle 3D simple de l'environnement. Cette correction s'applique en deux étapes. En premier lieu, un recalage non-rigide entre le nuage de points reconstruit et le modèle 3D est effectué de sorte à retrouver la cohérence globale de la reconstruction. Dans le but de raffiner le nuage de points obtenu, un ajustement de faisceaux contraint par le SIG est alors effectué sur l'ensemble de la reconstruction.La particularité de cet ajustement de faisceaux est qu'il prend implicitement en compte les contraintes géométriques apportées par le modèle 3D. La reconstruction ainsi corrigée est alors utilisée en tant que base de données pour la relocalisation en ligne d'une caméra mobile. La précision de relocalisation obtenue est en particulier suffisante pour les applications de réalité augmentée.Dans la deuxième partie de ce mémoire, nous détaillons une solution permettant de corriger en ligne la reconstruction SLAM. Pour cela, les contraintes géométriques apportées par le SIG sont exploitées au fur et à mesure de la trajectoire du véhicule. Nous montrons tout d'abord que la connaissance de la position relative de la caméra par rapport à la route permet de corriger de façon robuste la dérive de facteur d'échelle. De plus, lorsque les contraintes géométriques sont suffisantes, la reconstruction SLAM réalisée jusqu'à l'instant courant est recalée sur le SIG.Cela permet de corriger ponctuellement la dérive observée sur la position courante de la caméra.Le processus complet permet dès lors de localiser le véhicule avec une précision semblable à celle d'un système GPS sur des trajectoires de plusieurs kilomètres.Les deux méthodes proposées ont été testées à la fois sur des séquences de synthèse et réelles. Des résultats qualitatifs et quantitatifs sont présentés tout au long de ce mémoire.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00625652 |
Date | 08 October 2010 |
Creators | Lothe, Pierre |
Publisher | Université Blaise Pascal - Clermont-Ferrand II |
Source Sets | CCSD theses-EN-ligne, France |
Language | fra |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0146 seconds