Return to search

Geração de dados espaciais vagos baseada em modelos exatos

Made available in DSpace on 2016-06-02T19:06:05Z (GMT). No. of bitstreams: 1
5287.pdf: 3924606 bytes, checksum: 935b5a09df26eb1b41df901a189a6e2a (MD5)
Previous issue date: 2013-05-29 / Universidade Federal de Sao Carlos / Geographic information systems with the aid of spatial databases store and manage crisp spatial data (or exact spatial data), whose shapes (boundaries) are well defined and have a precise location in space. However, several spatial data do not have precisely known boundaries or have an uncertain location in space, which are called vague spatial data. The boundaries of a given vague spatial data may shrink or extend, therefore, may have a minimum and maximum extension. Clouds of pollution, deforestation, fire outbreaks, route of an airplane, habitats of plants and animals are examples of vague spatial data. In the literature, there are currently vague spatial data models, such as Egg-Yolk, QMM and VASA. However, according to our knowledge, they focus only on the formal aspect of the model definition. Thus, real or synthetic vague spatial data is not available for use. The main objective of this master thesis is the development of algorithms for the generation of synthetic vague spatial data based on the crisp models of spatial data vague Egg-Yolk, QMM and VASA. It was also implemented a tool, called VagueDataGeneration, to assist in the process of generation such data. For both the algorithms and the tool, the user is able to set the properties related to the data type of model, such as size, shape, volume, complexity, location and spatial distribution. By using the proposed algorithms and the VagueDataGeneration tool, researchers can generate large samples of vague spatial data, enabling new research, such as testing indexes for vague spatial data or evaluating query processing over data warehouses that store vague spatial data. The validation of the vague spatial data generation was conducted using a case study with data from vague rural phenomena. / Sistemas de informação geográfica com o auxílio de bancos de dados espaciais armazenam e gerenciam dados espaciais exatos, cujas formas (fronteiras) são bem definidas e que possuem uma localização exata no espaço. Entretanto, vários dados espaciais reais não possuem os seus limites precisamente conhecidos ou possuem uma localização incerta no espaço, os quais são denominados dados espaciais vagos. Os limites de um dado espacial vago podem encolher ou estender, portanto, podem ter uma extensão mínima e máxima. Nuvens de poluição, desmatamentos, focos de incêndios, rota de um avião, habitats de plantas e de animais são exemplos de dados espaciais vagos. Na literatura, atualmente existem modelos de dados espaciais vagos, tais como Egg-Yolk, QMM e VASA. No entanto, segundo o nosso conhecimento, estes enfocam apenas no aspecto formal da definição do modelo. Com isso, dados espaciais vagos reais ou sintéticos não estão disponíveis para uso. O principal objetivo deste trabalho de mestrado consiste no desenvolvimento de algoritmos para a geração de dados espaciais vagos sintéticos baseados nos modelos exatos de dados espaciais vagos Egg-Yolk, QMM e VASA. Também foi implementada uma ferramenta, chamada VagueDataGeneration, para auxiliar no processo de geração desses dados. Nos algoritmos propostos e na ferramenta desenvolvida, o usuário define as propriedades referentes ao tipo de dado de um modelo, tais como tamanho, formato, volume, complexidade, localização e distribuição espacial dos dados espaciais vagos a serem gerados. Por meio do uso dos algoritmos propostos e da ferramenta VagueDataGeneration, os pesquisadores podem gerar grandes amostras de dados espaciais vagos, possibilitando novas pesquisas, como exemplo, testar índices para dados espaciais vagos ou testar técnicas de processamento de consultas em Data Warehouses que armazenam dados espaciais vagos. A validação da geração de dados espaciais vagos foi efetuada usando um estudo de caso com dados de fenômenos rurais vagos.

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.ufscar.br:ufscar/531
Date29 May 2013
CreatorsProença, Fernando Roberto
ContributorsCiferri, Ricardo Rodrigues
PublisherUniversidade Federal de São Carlos, Programa de Pós-graduação em Ciência da Computação, UFSCar, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf
Sourcereponame:Repositório Institucional da UFSCAR, instname:Universidade Federal de São Carlos, instacron:UFSCAR
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0028 seconds