Return to search

Processing and Properties of Encapsulated van der Waals Materials at Elevated Temperature

Since the first successful isolation and subsequent characterization of graphene, the interest in two dimensional (2-D) materials has expanded exponentially. Despite the dozens of graphene-like van der Waals materials that have been found and their interesting properties, a significant obstacle in realizing their promise is their instability especially for monolayer and thin layers at elevated temperature. To overcome the obstacle of passivating the 2-D materials and study their properties at elevated temperature, we take advantage of the potential improvements afforded by assembling heterostructures by stacking the atomic thick 2-D materials together hexagonal boron nitride (ℎ-BN) which possess high chemical stability and thermal stability.

In this dissertation, several experiments are described in detail in which we utilized h-BN encapsulation to passivate atomically-thin transition metal dichalcogenide and studied their properties at elevated temperature. In the first project we demonstrated that chemical vapor deposition (CVD)-grown flakes of high-quality monolayers of WS₂ can be stabilized at elevated temperatures by encapsulation with only top ℎ-BN layers in the presence of ambient air, N₂ or forming gas. The best passivation occurs for ℎ-BN covered samples with flowing N₂. In the second project, we demonstrated that encapsulating monolayer MoSe₂ and WS₂ with top and bottom ℎ-BN can improve their thermal stability at high temperature and increase their photoluminescence (PL). The increased PL likely occurs because impurities are laterally expelled from the TMD stack during heating.

In the third project, we demonstrated the passivation of different modes of ℎ-BN encapsulation on thin layer FeSe sample by using temperature dependent Raman scattering. The complete encapsulation showed the best protection of thin layer FeSe. Finally, we utilized the temperature dependence of the Raman mode of thin-layer FeSe with complete encapsulation and applied a noncontact method to measure the thermal conductivity of the thin-layer FeSe.

Identiferoai:union.ndltd.org:columbia.edu/oai:academiccommons.columbia.edu:10.7916/vkef-bc62
Date January 2022
CreatorsHua, Xiang
Source SetsColumbia University
LanguageEnglish
Detected LanguageEnglish
TypeTheses

Page generated in 0.0016 seconds