Over the course of the past several decades the benefits of redeveloping brownfields have been widely recognized. Actions have been taken to foster sustainable redevelopment of brownfields by government, policy makers and stakeholders across the world. However, redevelopments encounter great challenges and risks related to environmental and non-environmental issues. In this work, we intend to build a comprehensive and practical framework to evaluate the hydrogeological and financial risks involved during redevelopment and to ensure developers reserve sufficient capital to cover unexpected future costs within the guarantee period. Punitive damages, which contribute to these costs, are in this thesis solely associated with the cost of repossessing a house within a development should the indoor air concentration of TCE exceed the regulatory limit at a later time.
The uncertainties associated with brownfield remediation have been among the barriers to brownfield redevelopment. This is mainly caused by the lack of knowledge about a site’s environmental condition. In order to alleviate uncertainties and to better understand the contaminant transport process in the subsurface, numerical simulations have been conducted to investigate the role of controlling parameters in determining the fate and transport of volatile organic compounds originating from a NAPL source zone located below the water table in the subsurface. In the first part of this thesis, the numerical model CompFlow Bio is used on a hypothesized three-dimensional problem geometry where multiple residential dwellings are built. The simulations indicate that uncertainty in the simulated indoor air concentration is sensitive to heterogeneity in the permeability structure of a stratigraphically continuous aquifer with uncertainty defined as the probability of exceeding a regulatory limit. Houses which are laterally offset from the groundwater plume are less affected by vapour intrusion due to limited transverse horizontal flux of TCE within the groundwater plume in agreement with the ASTM (2008) guidance. Within this uncertainty framework, we show that the Johnson and Ettinger (1991) model generates overly-conservative results and contributes to the exclusion zone being much further away from the groundwater plume relative to either CompFlow Bio or ASTM (2008). The probability of failure (or the probability of exceedence of the regulatory limit) is defined and calculated for further study.
Due to uncertainties resulting from parameter estimation and model prediction, a methodology is introduced to incorporate field measurements into the initial estimates from the numerical model in order to improve prediction accuracy. The principle idea of this methodology is to combine the geostatistical tool kriging with the statistical data assimilation method Kalman filter to evaluate the worth and effectiveness of data in a quantitative way in order to select an optimal sampling scenario. This methodology is also used to infer whether one of the houses located adjacent to affected houses has indoor air problems based on the measurements subject to the observation that the affected house is monitored and has problems and developers have liability if a problem occurs. In this part of the study, different sampling scenarios are set up in terms of permeability (1 – 80 boreholes) and soil gas concentration (2, 4 and 7 samples) and three metrics are defined and computed as a criterion for comparison.
Financing brownfield redevelopment is often viewed as a major barrier to the development process mainly due to risks and liabilities associated with brownfields. The common way of managing the risk is to transfer it to insurers by purchasing insurance coverage. This work provides two different strategies to price the risk, which is equivalent to an insurance premium. It is intended to give an instructive insight into project planning and feasibility studies during the decision-making process of a brownfield project. The two strategies of risk capital valuation are an actuarial premium calculation principle and a martingale premium calculation principle accounting for the hydrogeological and financial uncertainties faced in a project. The data used for valuation are the posterior estimates of data assimilation obtained from the results of different sampling scenarios. The cost-benefit-risk analysis is employed as a basis to construct the objective function in order to find the least cost among sampling scenarios for the project. As a result, it shows that drilling seven boreholes to extract permeability data and taking soil gas samplings in four locations or seven locations alternatively give the minimum total cost. Sensitivity analysis of some influential parameters (the safety loading factors and the possible methods to calculate the probability of failure) is performed to determine their roles of importance in the risk capital valuation. This framework can be applied to provide guidance for other risk-based environmental projects.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OWTU.10012/6970 |
Date | 20 August 2012 |
Creators | Wang, Xiaomin |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Thesis or Dissertation |
Page generated in 0.0018 seconds