Pour une représentation automorphe cuspidale de GL(2,F) avec F un corps de nombres totalement réel, tel que est de type (k, r) et satisfait une condition de pente non critique, l’on construit une distribution p-adique sur le groupe de Galois de l’extension abélienne maximale de F non ramifiée en dehors de p et 1. On démontre que la distribution obtenue est admissible et interpole les valeurs critiques de la fonction L complexe de la représentation automorphe. Cette construction est basée sur l’étude de la cohomologie de la variété modulaire de Hilbert à coefficients surconvergents. / For each cohomological cuspidal automorphic representation for GL(2,F) where F is a totally real number field, such that is of type (k, r) tand satisfies the condition of non critical slope we construct a p-adic distribution on the Galois group of the maximal abelian extension of F unramified outside p and 1. We prove that the distribution is admissible and interpolates the critical values of L-function of the automorphic representation. This construction is based on the study of the overconvergent cohomology of Hilbert modular varieties.
Identifer | oai:union.ndltd.org:theses.fr/2013LIL10014 |
Date | 13 June 2013 |
Creators | Barrera Salazar, Daniel |
Contributors | Lille 1, Dimitrov, Mladen |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0017 seconds