Return to search

Sinergismo entre eventos clim?ticos extremos, desmatamento e aumento da suscetibilidade a inc?ndios florestais no Estado do Acre / Synergism between extreme weather events, deforestation and increased susceptibility and risk of forest fires in Acre state

Submitted by Sandra Pereira (srpereira@ufrrj.br) on 2016-10-25T11:21:37Z
No. of bitstreams: 1
2016 - Juliana de Oliveira Tostes.pdf: 4618564 bytes, checksum: 951350c8676b3f82092fedfc3a9e0f79 (MD5) / Made available in DSpace on 2016-10-25T11:21:37Z (GMT). No. of bitstreams: 1
2016 - Juliana de Oliveira Tostes.pdf: 4618564 bytes, checksum: 951350c8676b3f82092fedfc3a9e0f79 (MD5)
Previous issue date: 2016-02-29 / This research analyzes the temporal and spatial variables that can affect the distribution and
frequency of hot spots in the state of Acre. Given the scarcity of regular spatial information
and long time series for the study area, it was initially carried out a validation between air
temperature and precipitation data in Global Grid Precipitation Climatology Centre (GPCC),
University of Delaware (UDEL) and Global Historical Climatology Network (GHCN) with
data from five Weather Stations Mainstream (EMC) to Acre and region, through an analysis
of precision and accuracy of the data. Regarding precipitation, it was found that both the
GPCC UDEL represented as the average variability significantly throughout the series. In
relation to the air temperature standards, although the accuracy of GHCN and UDEL was low,
it was satisfactory accuracy according to statistical methods. Assuming that the extreme
weather events increase susceptibility to forest fires, then it was carried out an analysis of the
influence of climate variability modes in generating categorized scenarios dry or wet years,
based on the Standardized Precipitation Index (SPI) and Harmonic and Spectral (AHE). It was
found that the AHE is not able to identify the intensity of the events, but was satisfactory in
the signal cycles identifying the anomaly, i.e., whether the abnormality SPI was positive or
negative. It was found that the Atlantic signal had greater influence on the precipitation of the
Pacific. For the regions that correspond to Groups 1, 2 and 3 there was an inverse pattern for
precipitation in relation to ENSO compared to the North and East Amazon. Thus, it identified
negative precipitation anomalies during La Ni?a and El Ni?o events during positive events for
the dry and rainy seasons. For the area corresponding to the effect Group 4 was otherwise.
The natural climate variability patterns identified in this study may contribute to the
establishment of strategies for prevention and adaptation to extreme events. Finally, in
Chapter 3 was carried out an analysis of the spatial and temporal patterns of the fire in Acre,
through a discussion of various climatic, environmental and anthropogenic variables that
contribute to its occurrence. Thus, through the Random Forest algorithm were generated
susceptibility maps that estimated the probability of fires and burned in the state. . It was
found that although drought triggers an increase in the number of hot spots, its spatial pattern
is more related to human factors such as the proximity areas already cleared. / A presente pesquisa analisa as vari?veis temporais e espaciais que podem afetar a
distribui??o e frequ?ncia dos focos de calor no estado do Acre. Diante da escassez de dados
regularmente espacializados e com longa s?rie temporal para a ?rea de estudo, inicialmente
foi realizada uma valida??o entre os dados de temperatura do ar e precipita??o em grade do
Global Precipitation Climatology Centre (GPCC), Universidade de Delaware (UDEL) e
Global Historical Climatology Network (GHCN) com dados de cinco Esta??es
Meteorol?gicas Convencionais (EMC) para o Acre e regi?o, atrav?s de uma an?lise da
precis?o e exatid?o dos dados. Em rela??o ? precipita??o, verificou-se que tanto o GPCC
quanto da UDEL representaram significativamente as variabilidades m?dias ao longo da s?rie.
Em rela??o aos padr?es da temperatura do ar, embora a precis?o do GHCN e da UDEL tenha
sido baixa, a exatid?o foi satisfat?ria segundo os m?todos estat?sticos. Partindo do pressuposto
que os eventos clim?ticos extremos aumentam a suscetibilidade a inc?ndios florestais, em
seguida foi realizada uma an?lise da influ?ncia dos modos de variabilidade clim?tica na
gera??o de cen?rios categorizados de anos secos ou ?midos, baseado no ?ndice de
Precipita??o Padronizado (SPI) e na An?lise Harm?nica e Espectral (AHE). Verificou-se que a
AHE n?o foi capaz de identificar a intensidade dos eventos, mas mostrou-se satisfat?ria na
identifica??o dos ciclos de sinal da anomalia, ou seja, se anomalia do SPI foi positiva ou
negativa. Verificou-se que o sinal do Atl?ntico teve maior influ?ncia sobre a precipita??o do
que o Pac?fico. Para as regi?es que correspondem os Grupos 1, 2 e 3 observou-se um padr?o
inverso para a precipita??o em rela??o ao ENOS, quando comparado com a Amaz?nia Norte e
Oriental. Assim, foram identificadas anomalias negativas de precipita??o durante eventos de
La Ni?a e positivas durante eventos de El Ni?o para as esta??es seca e chuvosa. Para a regi?o
que corresponde ao Grupo 4 o efeito foi contr?rio. Os padr?es de variabilidade natural do
clima identificados nesse trabalho podem contribuir para o estabelecimento de estrat?gias de
preven??o e adapta??o aos eventos extremos. Finalmente, no Cap?tulo 3 foi realizada uma
an?lise sobre o padr?o espacial e temporal do fogo no Acre, atrav?s de uma discuss?o sobre
diversas vari?veis clim?ticas, ambientais e antr?picas que contribuem para a sua ocorr?ncia.
Assim, por meio do algoritmo Random Forest foram gerados mapas de suscetibilidade que
estimaram a probabilidade de ocorr?ncia de inc?ndios e queimadas no estado. Verificou-se
que, embora a estiagem propicie um aumento do n?mero de focos de calor, o seu padr?o
espacial est? mais relacionado a fatores antr?picos, tais como a proximidade de ?reas j? desmatadas.

Identiferoai:union.ndltd.org:IBICT/oai:localhost:jspui/1336
Date29 February 2016
CreatorsTostes, Juliana de Oliveira
ContributorsFrancelino, M?rcio Rocha, Oliveira J?nior, Jos? Francisco, Fernandes Filho, Elp?dio In?cio, Amaral, Eufran Ferreira do, Lyra, Gustavo Bastos, Cataldi, M?rcio
PublisherUniversidade Federal Rural do Rio de Janeiro, Programa de P?s-Gradua??o em Ci?ncias Ambientais e Florestais, UFRRJ, Brasil, Instituto de Florestas
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFRRJ, instname:Universidade Federal Rural do Rio de Janeiro, instacron:UFRRJ
Rightsinfo:eu-repo/semantics/openAccess
Relation5. REFER?NCIAS BIBLIOGR?FICAS ACRE. Governo do Estado do Acre. Programa Estadual de Zoneamento Ecol?gico- Econ?mico do Estado do Acre. Zoneamento Ecol?gico-Econ?mico do Acre Fase II: documento S?ntese ? Escala 1:250.000. Rio Branco: SEMA, 2006. ACRE. Secretaria de Estado de Meio Ambiente. Plano integrado de preven??o, controle e combate ?s queimadas e aos inc?ndios florestais do estado do Acre. 3? ed. Rio Branco: SEMA, 2013. ALCANTARA FILHO, J. L; FONTES, M. R. O. A forma??o da propriedade e a concentra??o de terras no Brasil. Revista de Hist?ria Econ?mica & Economia Regional Aplicada, v. 4, n. 7, p.63-85, 2009. ALENCAR, A. A. C.; SOLORZANO, D. C.; NEPSTAD, D. C. Forest modeling forest understory fires in an Eastern Amazonian landscape. Ecol. Appl., v.14, n. 4, p. S139?S149, 2004. ALENCAR, A., G. P.; ASNER, D. E.; KNAPP; D.; ZARIN, J. Temporal variability of forest fires in eastern Amazon. Ecological Application, v. 21, p.2397-2412, 2011. ALENCAR, A. C.; NEPSTAD, D.; DIAZ, M. C. V. Forest understory fire in the Brazilian Amazon in ENSO and non ENSO years: area burned and committed carbon emissions. Earth Interactions, v. 10, n. 6, p. 1-17, 2006. ARAG?O, L. E. O. C., Y. MALHI, N. BARBIER, A. LIMA, Y. E. SHIMABUKURO, L. O. ANDERSON, AND S. SAATCHI. Interactions between rainfall, deforestation and fires during recent years in the Brazilian Amazonia. Phil. Trans. R. Soc., v.363, p.1779-1785, 2008. ARAG?O, L. E. O. C.; MALHI, Y.; ROMAN-CUESTA, R. M.; SAATCHI, S., ANDERSON, L. O.; SHIMABUKURO, Y. E. Spatial patterns and fire response of recent Amazonian droughts. Geophys. Res. Lett., v.34, L07701, 2007. ARAG?O, L. E. O. C.; POULTER, B.; BARLOW, J.B; ANDERSON, L.O; MALHI, Y; SAATCHI, S., PHILLIPS, O.L.; GLOOR, E. Environmental change and the carbon balance of Amazonian forests. Biological Reviews, v. 89, p. 913-931, 2014. ARIMA, E. Y.; SIMMONS, C. S.; WALKER, R. T.; COCHRANE, M. A. Fire in the Brazilian Amazon: A spatially explicit model for policy impact analysis. Journal of regional Science, v.47, n.3, 541?567, 2007. BRASIL. Lei Federal N? 9.985 de 18/07/2000. Regulamenta o artigo 225 da Constitui??o Federal e institui o Sistema Nacional de Unidades de Conserva??o e da outras provid?ncias, 2000. BREIMAN, L. Random forests. Machine Learning Journal. Hingham, v.45, p.5?32, 2001. BROWN, I. F.; SCHROEDER, W.; SETZER, A .; M; DE LOS RIOSMALDONADO; PANTOJA, N.; DUARTE, A .; MARENGO, J. Monitoring Fires in Southwestern Amazonia Rain Forests Eos, Transactions, American Geophysical Union, v. 87, n. 26, p.253-264, 2006. CARDOSO, M. F., HURTT, G., MOORE, B., NOBRE, C. A.; PRINS, E. Projecting future fire activity in Amazonia. Global Change Biology, v.9, n. 5, p. 656-669, 2003. CARVALHO, A. L.; NELSON, B. W; BIANCHINI, M.C.; PLAGNOL, D.; KUPLICH, T.M.; DALY, D.C. Bamboo-dominated forests of the Southwest Amazon: detection, spatial extent, life cycle length and flowering waves. Plos One, v. 8, p.e54852, 2013. CASTELLI, M.; VANNESCHI, L.; POPOVI?, A. Predicting burned areas of forest fires: an artificial intelligence approach. Fire Ecology, v. 11, n. 1, p.106-118, 2015. 126 CENSO DEMOGR?FICO BRASILEIRO 2010. Dispon?vel em: <www.ibge.gov.br> Acesso em 06/09/2014. CHEN, Y.; RANDERSON, J.T.; MORTON, D.C.; DE FRIES, R. S.; COLLATZ, G. J.; KASIBHATLA, P. S.; GIGLIO, L.; JIN, Y.; MARLIER, M.E.. Forecasting Fire Season Severity in South America Using Sea Surface Temperature Anomalies. Science, v. 334, p. 787-791, 2011. CHUVIECO, E.; CONGALTON, R.G. Application of remote sensing and geographic information systems to forest fire hazard mapping. Remote Sens. Environ. v. 29, p. 147?159, 1989. COCHRANE, M. A. Fire science for rainforest. Nature, v.421, p. 913-919, 2003. COCHRANE, M. A forest fire, deforestation and landcover change in the Brazilian Amazon. THE JOINT FIRE SCIENCE CONFERENCE AND WORKSHOP, 2009. COCHRANE, M. A.; C. P. BARBER. Climate change, human land use and future fires in the Amazon. Global Change Biology, v. 15, p.601-612, 2009. COCHRANE, M., AND W. F. LAURANCE. Fire as a large-scale edge effect in Amazonia forests. Journal of Tropical Ecology, v. 18, p.311-325, 2002. CONGALTON, R.; GREEN, K. Assessing the Accuracy of Remotely Sensed Data - Principles and Practices. Boca Raton: CRC Press, Taylor & Francis Group, 2009. CORTEZ, P.; MORAIS, A. D. J. R.. A data mining approach to predict forest fires using meteorological data. In: NEVES, J.M.; SANTOS, M.F; MACHADO, J.M., editors. Proceedings of the Portuguese conference on artificial intelligence (EPIA 2007) Guimar?es, Portugal. Springer, Berlin Heidelberg, Germany, p.512-523, 2007. DAVIDSON, E. A., A. C. DE ARA?JO, P. ARTAXO, J. K. BALCH, I. F. BROWN, M. M. BUSTAMANTE, M. T. COE, R. DEFRIES, M. KELLER, M. LONGO, J. W. MUNGER, W. SCHROEDER, B. SOARES FILHO, C. SOUZA JR, AND S. C. WOFSY. The Amazon basin in transition. Nature, v. 48, p.321-328, 2012. ESKANDARI, S.; CHUVIECO, E. Fire danger assessment in Iran based on geospatial information. Int. J. Appl. Earth Observ. Geoinf., v. 42, p. 57?64, 2015. FLORES, B. M. Inc?ndios rasteiros em florestas sazonalmente alag?veis por ?gua preta na Amaz?nia: carga de combust?vel e recupera??o lenta. Manaus. 46 f. Disserta??o (Biologia (Ecologia)) - Instituto Nacional de Pesquisas da Amaz?nia, 2011. GUYON, I.; ELISSEEFF, A. An introduction to variable and feature selection. Journal of Machine Learning Research, v.3, p.1157-1182, 2003. HOFFMAN, W. A., SCHROEDER, W.; JACKSON R. B. Regional feedbacks among fire, climate, and tropical deforestation, J. Geophys. Res., v.108, n D23, 4721, 2003. JANBAZ GHOBADI, G.H.; GHOLIZADEH, B.; MAJIDI DASHLIBURUN, O. Forest fire risk zone mapping from geographic information system in Northern Forests of Iran (Case study, Golestan province). Int. J. Agri. Crop Sci., v. 4, n.12, p. 818?824, 2012. KELLNDORFER, J.; WALKER, W.; PIERCE, L.; DOBSON, C.; FITES, J. A.; HUNSAKER, C.; VONA, J.; CLUTTER, M. Vegetation height estimation from shuttle radar topography mission and national elevation datasets. Remote Sensing of Environment, v. 93, p.339?358, 2004. LANDIS, J. R.; KOCH, G. G. The measurement of observer agreement for categorical data. Biometrics, v.33, n.1, p.159-174, 1977. LEUENBERGER, M., KANEVSKI, M., VEGA OROZCO, C.D. Forest fires in a random forest. Eur. Geosci. Union Gen. Assembly, v.15, p. 3238, 2013. LEWIS, S. L.; BRANDO P. M.; PHILLIPS, O. L.; VAN DER HEIJDEN, G. M. F.; NEPSTAD, D. The 2010 Amazon drought. Science, v.331, n.6017, p.554?554, 2011. LIAW, A.; WIENER, M. Classification and Regression by random Forest, RNews, v. 2, p. 18? 22, 2002. 127 MAEDA, E. E.; FORMAGGIO, A. R.; SHIMABUKURO, Y. E.; ARCOVERDE, G. F. B.; HANSEN, M. C. Predicting forest fire in the Brazilian Amazon using MODIS imagery and artificial neural networks. International Journal of Applied Earth Observation and Geoinformation, v.11, n. 4, 265-272, 2009. MARENGO, J. A., C. A. NOBRE, J. TOMASELLA, M. D. OYAMA,G. S. OLIVEIRA, R. OLIVEIRA, H. CAMARGO, L. M. ALVES, NA DI. F. BROWN. The drought of Amazonia in 2005. Journal of Climate, v. 2, p. 495?516, 2008. MARENGO, J. A., J. TOMASELLA, L. M. ALVES, W. R. SOARES, AND D. A. RODRIGUEZ . The drought of 2010 in the context of historical droughts in the Amazon region. Geophys. Res. Lett., v. 38, n.12, L12703, 2011. MCKEE, T. B.; DOESKEN, N. J.; KLEIST, J. The relationship of drought frequency and duration to the time scales. In: CONFERENCE ON APPLIED CLIMATOLOGY, 8, 1993, Anhaeim, CA. Proceedings. Boston: American Meteorological Society, p. 179-184, 1993. MESQUITA, A. G. G. Impactos das queimadas sobre o ambiente e a biodiversidade acreana. Revista Ramal de Ideias, 2010. Dispon?vel em: < http://queimadas. cptec.inpe.br/~rqueimadas/ >. Acesso em: 01 de fevereiro de 2016. MU, Q.; ZHAO M.; RUNNING, S.W. Improvements to a MODIS Global Terrestrial Evapotranspiration Algorithm. Remote Sensing of Environment, v. 115, p. 1781?1800, 2011. NEPSTAD, D.C.; CARVALHO, C.R.; DAVIDSON, E.A.; JIPP, P.; LEFEBVRE, P.; NEGREIROS, G.H.; SILVA, E.D.; STONE, T.; TRUMBORE, S.; VIEIRA, S.S.. The Role of Deep Roots in the Hydrological and Carbon Cycles of Amazonian Forests and Pastures. Nature, v. 372 , p. 666-669, 1994. NEPSTAD, D. C., VERISSIMO, A., ALENCAR, A., NOBRE, C. Large-scale impoverishment of Amazonian forests by logging and fire. Nature, v. 398, p. 505-508, 1999. NEPSTAD, D. C., CARVALHO, G., CRISTINA B. A., ALENCAR, A., PAULO C. J., BISHOP, J.,MOUTINHO, P., LEFEBVRE, P., LOPES SILVA, U. & PRINS, E. Road paving, fire regime feedbacks, and the future of Amazon forests. Forest Ecology and Management, v. 154, n. 3, p. 395-407, 2001. NEPSTAD, D.; LEFEBVRE, P.; LOPES DA SILVA, U; TOMASELLA, J.; SCHLESINGER, P.; SOL?RZANO, L; MOUTINHO, P; RAY, D., AND GUERREIRA BENITO, J. Amazon drought and its implications for forest flammability and tree growth: A basin-wide analysis, Global Change Biol., v.10, n.5, 704?717, 2004. NEPSTAD, D. C.; SCHWARTZMAN, S.; BAMBERGER, B.; SANTILLI, M.; RAY, D.; SCHLESINGER, P.; LEFEBVRE, P.; ALENCAR, A.; PRINZ, E.; FISKE, G.; ROLLA, A.. Inhibition of Amazon deforestation and fire by parks and indigenous lands. Conservation Biology, v.20, p.65?73, 2006. OLIVEIRA, S.; OEHLER, F.; SAN-MIGUEL-AYANZ, J.; CAMIA, A.; PEREIRA, J.M.C. Modeling spatial patterns of fire occurrence in Mediterranean Europe using multiple regression and random forest. Forest Ecology and Management, v. 275, p.117?129, 2012. PANTOJA, M.C; COSTA, E.L.; POSTIGO, A. A presen?a do gado em reservas extrativistas: algumas reflex?es. Revista P?s Ci?ncias Sociais, v. 6, n. 12, p.1-27, 2010. POURTAGHI, S. D.; POURGHASEMI, H. R.; ARETANO, R.; SEMERARO, T. Investigation of general indicators influencing on forest fire and its susceptibility modeling using different data mining techniques. Ecological Indicators, v. 64, p. 72?84, 2016. RAY, D., NEPSTAD, D. and MOUTINHO, P. Micrometeorological and canopy controls of fire susceptibility in forested Amazon landscape, Ecol. Appl.,v. 15, n.5, 1664?1678, 2005. ROCKWELL, C. A.; KAINER, K. A.; MARCONDES, N.; BARALOTO, C. Ecological limitations of reduced-impact logging at the smallholder scale. Forest Ecology and Management, v. 238, p.365-374, 2007. 128 SAN-MIGUEL-AYANZ, J., CARLSON, J.D., ALEXANDER, M., TOLHURST, K., MORGAN, G., SNEEUWJAGT, R. Current methods to assess fire danger potential. In: CHUVIECO, E. (Ed.), Wildland Fire Danger Estimation and Mapping. The role of remote sensing data. World Scientific, Singapore, 2003, p. 21?61. SCHROEDER, W.; ALENCAR, A.; ARIMA, E.; SETZER, A. The Spatial Distribution and Interannual Variability of Fire in Amazonia. Amazonia and Global Change Geophysical Monograph Series 186, 2009. SILVA, S. S.; ALENCAR, A. A.C; MENDOZA, E. R. H; BROWN, F. Din?mica dos inc?ndios florestais no Estado do Acre nas d?cadas de 90 e 00. In: Anais XVI SIMP?SIO BRASILEIRO DE SENSORIAMENTO REMOTO - SBSR, INPE. Foz do Igua?u, PR, Brasil, 13 a 18 de abril de 2013. SILVESTRINI, R. A.; SOARES-FILHO, B.S.; NESPTAD, D.; COE, M.; RODRIGUES, H.; ASSUN??O, R. Simulating fire regimes in the Amazon in response to climate change and deforestation. Ecological Applications, v. 21, p. 1573?1590, 2011. SMITH, M.; NELSON, B. W. Fire favors expansion of bamboo-dominated forests in the south-west Amazon. Journal of Tropical Ecology, v. 27, p.59-64, 2011. SOARES FILHO, B.; SILVESTRINI, R.; NEPSTAD, D.; BRANDO,P.; RODRIGUES, H.; ALENCAR, A.; COE, M.; LOCKS, C.; LIMA, L.; HISSA, L.; STICKLER, C. Forest fragmentation, climate change and understory fire regimes on the Amazonian landscapes of the Xingu headwaters. Landscape Ecology, v. 27, n.4, p. 585-598, 2012. STOJANOVA, D; PANOV, P.; KOBLER, A.; DZEROSKI, S., TASKOVA, K. Learning to predict forest fires with different data mining techniques. In: PROCEEDINGS OF THE 9TH INTERNATIONAL MULTI CONFERENCE INFORMATION SOCIETY IS, 9-3th October 2006. VADJUNEC, J.; GOMES, C. V.; LUDWIGES, T. Land-Use/Land-Cover Change Among Rubber Tapper in the Chico Mendes Extractive Reserve, Acre, Brazil. Journal of Land Use Science, v. 1, p. 1-26, 2009. VELDMAN, J. W.; MOSTACEDO, B.; PENA-CLAROS, M.; PUTZ, F. E. Selective logging and fire as drivers of alien grass invasion in a Bolivian tropical dry forest. Forest Ecology and Management, v. 258, p.1643-1649, 2009. WITTEN, I. H.; FRANK, E.; HALL, M. A. Data mining: practical machine learning tools and techniques. 3ed. San Francisco: Morgan Kaufmann, 2011. WWF-BRASIL, SECRETARIA DE ESTADO DE MEIO AMBIENTE DO ACRE, SECRETARIA DE ESTADO DE FLORESTA DO ACRE, INSTITUTO CHICO MENDES DE CONSERVA??O DA BIODIVERSIDADE. Efetividade de gest?o das unidades de conserva??o no Estado do Acre. Bras?lia: WWF-Brasil, 2009. .

Page generated in 0.0091 seconds