Based on the Lyapunov stability theorem, an adaptive output feedback controller is proposed in this thesis for a class of multi-input multi-output (MIMO) dynamic systems with time-varying delay and disturbances. With an adaptive mechanism embeded in the proposed control scheme, the controller will automatically adapt the unknown upper bound of perturbation, so that the information of upper bounded of perturbations is not required. Once the controlled system reaches the switching hyperplane, not only the dynamics of system can be stabilized, but also the state trajectories can be driven into a small bounded region whose size can be adjusted through the design parameter. Two numerical examples are given for demonstrating the feasibility of the proposed control scheme.
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0712102-124816 |
Date | 12 July 2002 |
Creators | Chen, Shih-Pin |
Contributors | none, none, none, none |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0712102-124816 |
Rights | campus_withheld, Copyright information available at source archive |
Page generated in 0.002 seconds